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the robustness of box invariance for linear systems using spectral properties of Metzler matrices. We also
present sufficient conditions for establishing box invariance of switched and hybrid systems. In general,
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1. Introduction

An invariant set is a subset of the state space of a dynamical
system with the property that, if the system state is in this set
at some time, then it will stay in the set indefinitely in the
future (Blanchini, 1999). An invariant set is extremely useful
from the perspective of formal analysis and verification (Clarke,
Grumberg, & Peled, 2000). The task in formal verification is to
show that none of the trajectories of a given dynamical system
violate a given property, such as a liveness or safety property,
or in the opposite instance to find “witnesses” that do not abide
by such properties. Safety specifications form an important class
of properties, which encode the condition that a system can
never reach a given subset of “unsafe” or “bad” states. Direct
verification of safety properties is difficult because computing the
set of reachable states is often infeasible. However, an invariant
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set can be used to verify a safety property by showing that it
encloses all reachable states, but none of the unsafe states. From
a dual perspective, invariants can be used to look at reachability
properties, where the objective is to verify if any trajectory of
the system, starting from a region of the state space, will reach
a target set (which is again a subset of the state space). The
concept of invariance can also be related to certain notions of
stability (Podelski & Wagner, 2006). This motivates the need
to develop effective and constructive approaches to discover
invariant sets for dynamical systems—and especially invariant sets
with simple shapes.

Positively invariant sets can be obtained by exploiting the
property that their boundaries may correspond to level surfaces
of a proper Lyapunov-like function. This approach has been the
source of several results on the existence of positively invariant
sets (Blanchini, 1999; Kiendl, Adamy, & Stelzner, 1992). However,
this is quite restrictive in general, since systems that are not stable
can still have useful invariant sets.

In this paper, we focus on positively invariant sets that are in
the form of a box, that is, a hyper-rectangular region specified
by giving (upper and lower) bounds for each state variable. The
concept of box invariance is related to a number of studies in the
literature (Blanchini, 1999) (see Section 2.1). For instance, Kiendl
et al. (1992) look at the use of vector norms to study stability.
The notions that are developed in the present study are related to
that of component-wise stability (Pastravanu & Voicu, 2003; Voicu,
1984), as well as to the concepts of practical stability and Lagrange
stability (Passino, Burgess, & Michel, 1995).
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The study of several systems, especially models drawn from
the domain of systems biology, has suggested that they frequently
admit box-shaped, positively invariant sets. This seems natural
in retrospect since state variables often correspond to physical
quantities that are naturally constrained and tend to either
degrade, or remain conserved. In this paper, we are interested
in the practical aspects of the notion of box invariance. In
particular, we focus on how complex it is to check for box
invariance of a dynamical model, as well as to construct a
particular box, whenever possible. More precisely, we show that
it is computationally feasible to check if a dynamical system is
invariant with respect to a box set, and to explicitly find out box
invariant sets for a large class of dynamical systems (in particular,
biological ones). Because of the discussed connections with other
notions in systems theory, it is then argued that box invariance
is an ideal concept for building analysis and verification tools to
investigate such systems.

Outline. We formally define the notion of box invariance
in Section 2. Next, we present necessary and/or sufficient
characterizations of this notion for linear (Section 3), affine
(Section 3.3), and classes of nonlinear systems (Section 4) that
are especially meaningful for models of biological systems. Box
invariance of linear systems is strongly related to the theory
of Metzler matrices, as explained in Section 3.1. Using this
connection, we perform robustness analysis of box invariant
systems in Section 3.2. In Section 5, we extend the study to the
more general case of switched and hybrid systems. All throughout,
we will present computational complexity results and illustrate
the introduced concepts using examples from systems biology.

2. The concept of box invariance

We consider general and uncontrolled dynamical systems of
the form x = f(x),x € R". We assume the basic boundedness
and Lipschitz properties that ensure the existence of a unique
solution of the vector field, given any possible initial condition. A
rectangular box around a point X, is specified using two diagonally
opposite points I and u, where I < x; < u (interpreted
component-wise) and is defined as Box(I,u) .= {x | | < x < u}.
Such a box has 2n faces consisting of n lower and n upper faces. The
jth lower face is defined as Face I'(l, u) := {x € Box(l, u) | x; = I;}
and the jth upper face is defined as Face U'(I, u) := {x € Box(l, u) |
xj =u;}, forje{1,...,n}

Definition 1 (Box Invariant System). A dynamical system ¥ = f(x)
is said to be box invariant around an equilibrium point x, if there
exists a finite rectangular box Box(l, u) around X, such thatf (y); <
0 whenever y € FaceU/(I, u) and f@); = 0 whenevery e
Face I/ (1, u). The system is said to be strictly box invariant if the
inequalities hold strictly.

An equivalent definition of box invariant system can be given as
a system that admits a box as a positively invariant set. In the
case of multiple equilibria, either finite or infinite in cardinality,
we require the existence of (possibly different) boxes for each of
them.

Note that the existence of a box is unaffected by the reordering
of state variables and by rotations by multiples of /2. It
also displays invariance under independent stretches of the
coordinates. Nevertheless, it is not invariant under general linear
transformations.

Definition 2 (Symmetrical Box Invariance). A system x = f(x) is
said to be symmetrically box invariant around the equilibrium xg
if there exists a point u > x; (interpreted component-wise) such
that the system & = f(x) is box invariant with respect to the box
Box(2xy — u, u).

2.1. Box invariance through vector norms

The boundary of a box can be seen as a level surface of a function
defined by a vector norm. Let [|X|oc = max{|x;j[,i = 1,...,n}
denote the infinity norm on an n-dimensional Euclidean space. Let
D be an n x n positive diagonal matrix. Any level set of the positive
real-valued function || Dx|| », coincides with a hyper-rectangle in R"
that is symmetric around the origin. Specifically, for any positive
constant ¢ € R, {x | |DX|lsc < ¢} = Box(—cD~'1, cD~'1), where
1is the n-dimensional unity vector. Accordingly, symmetrical box
invariance has in part already, though not explicitly, been studied
in the literature by exploring when ||Dx||», is a Lyapunov function
for a dynamical system (Pastravanu & Voicu, 2003; Voicu, 1984).
For linear systems, a sufficient condition for this to hold is the
existence of a matrix Q of proper size, with «£(Q) < 0, such that
WA = QW (Kiendl et al., 1992). Here w(Q) is a matrix measure
defined as w(Q) = lim,_, o+ %.

Whereas the existence of box invariants is closely related to
Lyapunov stability under infinity vector norms for linear systems
(see Theorems 2 and 3), this is not so for more general nonlinear
and hybrid systems. Invariants are also not easy to compute in
general. This motivates the search for invariants of a simple form,
such as a box. As we show in the present work, box invariants can
be easily computed using simple constraint-solving techniques.

3. Box invariant linear and affine systems

Given a linear system and a box around its equilibrium point,
the problem of checking whether the system is box invariant with
respect to the given box can be solved by verifying the related
condition only at the 2" vertices of the box (rather than on all the
points of the surface of the box). The set of vertices, Vert(l, u), of
the box Box(l, u) isdefined as Vert (I, u) = {x | x; = l;vx; = u;, Vi}.

Proposition 1. A linear system X = Ax, x € R", is box invariant if
there exist two points 1 € (R™)" and u € (R™)" such that for each
point ¢ € Vert(l, u), we have Ac ~ 0, where ~; is < if ¢; = u; and
~iis > if ¢ =1

The proof follows the observation that the inequalities state that
the vector field points inwards on the 2" vertices in Vert(l, u), and
that it is possible to extend by linearity the value of the vector
field at other points on the faces of the box. Proposition 1 claims
that box invariance of linear systems can be checked by testing the
satisfiability of n2" linear inequality constraints, over 2n unknowns
(given by I and u). Lemmas 1 and 2 will allow us to simplify
this requirement to testing n linear inequalities over n variables.
Observe that the notion of box invariance and symmetrical box
invariance are equivalent for linear systems:

Lemma 1. A linear system X = Ax, where A € R"™ ", is box invariant
if and only if it is symmetrically box invariant.

Proof. If the linear system is symmetrically box invariant, then it
is clearly also box invariant. To prove the converse, assume that
the linear system is box invariant with respect to the box Box(l, u),
wherel € (R7)" and u € (R™)". We will show that the linear
system is also box invariant with respect to the (symmetrical)
box Box(—c, c¢), where ¢; = min(|l;|, |u;]). Consider firsti = 1
and the case when u; < —I; so that ¢; = uy. On the face
Face U'(1, u) of the x; = u; hyper-surface, by definition of ¢, we
have FaceU'(—c,c¢) C FaceU'(l, u). Hence, (AX); < 0,Vx €
FaceU'(—c, c). Since A(—x) = —Ax, we also get (Ax); > 0
for all ¥ € FaceL'(—c, c¢). The opposite case when —I; < uj is
similar. Repeating this argument fori = 2, 3, ..., n, completes the
proof. O
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