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a b s t r a c t

We study the asymptotic properties of control by interconnection, a passivity-based controller design
methodology for stabilization of port-Hamiltonian systems. It is well-known that the method, in its
basic form, imposes some unnatural controller initialization to yield asymptotic stability of the desired
equilibrium. We propose two different ways to overcome this restriction, one based on adaptation ideas,
and the other one adding an extra damping injection to the controller. The analysis and design principles
are illustrated through an academic example.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, port-Hamiltonian (PH) models (van der Schaft,
2000) have been a focus of attention in the control community
(e.g. Cheng, Astolfi, and Ortega (2005), Fujimoto, Sukurama, and
Sugie (2003), Ortega, van der Schaft, Maschke, and Escobar (2002)
and Wang, Feng, and Cheng (2007)). There are, at least, two
reasons for their appeal: first, that they describe a wide class of
physical systems, including (but not limited to), systems described
by Euler–Lagrange equations. Second, that PH models directly
reveal the fundamental role of the physical concepts of energy,
dissipation and interconnection—making passivity-based control
(PBC) (Ortega & Spong, 1989; van der Schaft, 2000) a suitable
candidate to regulate the behavior of PH systems.
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In this paper, we are interested in the stabilization of PH
systems using control by interconnection (CbI) (Ortega, van der
Schaft, Mareels, & Maschke, 2001; Ortega et al., 2002). Similarly to
other PBC techniques, the objective in CbI is to render the closed-
loop passive with respect to a desired energy (storage) function.
This is accomplished in CbI selecting the controller to also be a PH
systemwhich, connected to the plant through a power-preserving
interconnection, results in a closed-loop that is again PH with
energy function equal to the sum of the plant’s and the controller’s
energies.
In its original formulation, applicability of CbI is stymied by

the so-called dissipation obstacle (Ortega et al., 2001), a problem
that appears when the dissipation of the open-loop is different
from zero at the desired equilibrium. In Ortega, van der Schaft,
Castaños, and Astolfi (2008), this problem has been solved,
generating different passive outputs giving rise to the so-called
power shaping CbI. Both methods, standard and power shaping
CbI, rely on the creation of functions, called Casimirs, which
are independent of the energy function. The existence of these
invariants presents an obstruction to the asymptotic stabilization
of the desired equilibrium. The main contribution of this paper
is to propose two modifications to the existing CbI to overcome
this problem. The first modification is motivated by adaptation
principles,while the second one is based on the addition of an extra
damping injection to the controller. As an additional by-product of
the analysis performed, the two versions of CbI are unified.
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To make the paper self-contained, we begin the following
sectionwith a brief description of CbI and refer the reader toOrtega
et al. (2008) for more details. Section 3 contains specific guidelines
to apply CbI for equilibrium stabilization. The modifications to
achieve asymptotic stability are then presented in Section 4.
Finally, we state some concluding remarks in Section 5.
Notation. The arguments of the functions are omitted once they
are defined and there is no possibility of confusion. All vectors
defined in the paper are column vectors, even the gradient of a
scalar function, denoted with the operator ∇ , ∂

∂x . We also define

∇
2 , ∂2

∂x2
. Given a vector x and a matrix K = K> > 0, ‖x‖ denotes

the Euclidean norm and ‖x‖K the norm x>Kx.

2. Preliminaries

Although this note dealswith PH systems (van der Schaft, 2000)
only, it will be useful to consider first a general nonlinear system

ẋ = f (x)+ g(x)u
y = h(x),

(1)

where x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rm is the
output, withm ≤ n. The functions f , g and h are smooth and of ap-
propriate dimensions and the matrix g is full rank, uniformly in x.

2.1. Cyclo-passivity

Definition 1. System (1) is said to be cyclo-passive if there exists a
differentiable function H : Rn → R (called the storage function)
that satisfies the power balance inequality

Ḣ ≤ y>u (2)

when evaluated along the trajectories of (1).

Recall that a system is passive if (2) holds and H is bounded
from below. Because of this additional restriction, every passive
system is cyclo-passive but the converse is not true. In terms of
energy exchange, cyclo-passive systems exhibit a net absorption
of energy along closed trajectories (Hill & Moylan, 1980), while
passive systems absorb energy along any trajectory that starts from
a state of minimal energy x(0) = argminH(x).
According to Hill–Moylan’s Theorem (Hill & Moylan, 1980),

system (1) is cyclo-passive (with storage function H(x)) if and only
if, for some q ∈ N, there exists a function l : Rn → Rq such that

∇H>f = −‖l‖2 (3a)

h = g>∇H. (3b)

Setting the dissipation d , ‖l‖2 and differentiating H leads to the
power balance

Ḣ = y>u− d. (4)

We now focus on PH systems

Σ :

{
ẋ = F∇H + gu
y = g>∇H (5)

where F : Rn → Rn×n, with F + F> ≤ 0. It can be easily verified
that (5) is cyclo-passive with storage function H and dissipation
d , −∇H>F∇H .
For future reference let us compute the assignable equilibria

of (5) as the elements of the set

Ex ,
{
x | g⊥F∇H = 0

}
, (6)

with g⊥ : Rn → R(n−m)×n a full rank left-annihilator of g , that is,
g⊥g = 0 and rank g = n−m. Associated to each x? ∈ Ex there is a
uniquely defined constant control given by

u? , −g+(x?)F(x?)∇H(x?), (7)

where g+ is the Moore-Penrose pseudo-inverse of g , that is, g+ ,
[g>g]−1g>. Note that g+ is well-defined since g is assumed full
rank, implying that the inverse of g>g always exists.

2.2. Example

The system described by(
ẋ1
ẋ2

)
=

(
−
1
2
x1 + x2
−x22

)
+

(1
2
− x22
x32

)
u (8)

can be written in the PH form (5) with

F =

(
−
1
2

x2
0 −x22

)
, H =

1
2
x21 + x2, g =

(1
2
− x22
x32

)
(9)

and output

y = g>∇H = x1

(
1
2
− x22

)
+ x32.

Notice that Eq. (4) does not yield any information about the
stability of the open-loop equilibrium (0, 0), since H is not
bounded from below. Actually, it can be readily seen that with
u = 0 the equilibrium is unstable and that the trajectories of the
open-loop system exhibit finite escape time. Moreover, the origin
cannot be stabilized by any continuous feedback.
The set of assignable equilibria for this system is

Ex =
{
(x1, x2) | x22(1− x1x2) = 0

}
. (10)

2.3. Control by interconnection

In CbI a PH controller of the form

Σc :

{
ξ̇ = uc
yc = ∇Hc(ξ)

(11)

is proposed. ξ ∈ Rm is the state of the controller,uc, yc are the input
and the output of the controller, respectively, and Hc : Rm → R
is a to-be-designed controller storage function. See Ortega et al.
(2008) and van der Schaft (2000) for a justification of this choice
of controller structure.
Control by interconnection comes in two basic variants. In the

standard version,Σ andΣc are coupled using the classical unitary
feedback power-preserving interconnection

ΣI :

{(
u
uc

)
=

(
0 −1
1 0

)(
y
yc

)
+

(
v
0

)
, (12)

where v is a new virtual input.1 It is well-known (van der Schaft,
2000) that the PH structure is invariant under power-preserving
interconnection; this pattern leading to the interconnected PH
system

ΣT s :


(
ẋ
ξ̇

)
=

(
F −g
g> 0

)
∇HT +

(
g
0

)
v

yT s =
(
g> 0

)
∇HT

(13)

1 We recall that an interconnection of PH systems is power preserving if it
satisfies y>u+ y>c uc = y

>v.
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