
Automatica 44 (2008) 2487–2497

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

A generalized multi-period mean–variance portfolio optimization with Markov
switching parametersI

Oswaldo L.V. Costa ∗, Michael V. Araujo
Departamento de Engenharia de Telecomunicações e Controle, Escola Politécnica da Universidade de São Paulo, 05508-970-São Paulo, SP, Brazil

a r t i c l e i n f o

Article history:
Received 15 March 2007
Received in revised form
28 January 2008
Accepted 7 February 2008
Available online 10 September 2008

Keywords:
Optimal control
Markov chain
Stochastic systems
Portfolio optimization
Multi-period
Generalized mean–variance

a b s t r a c t

In this paper, we deal with a generalized multi-period mean–variance portfolio selection problem with
market parameters subject to Markov random regime switchings. Problems of this kind have been
recently considered in the literature for control over bankruptcy, for cases in which there are no jumps in
market parameters (see [Zhu, S. S., Li, D., & Wang, S. Y. (2004). Risk control over bankruptcy in dynamic
portfolio selection: A generalized mean variance formulation. IEEE Transactions on Automatic Control, 49,
447–457]).We present necessary and sufficient conditions for obtaining an optimal control policy for this
Markovian generalized multi-period mean–variance problem, based on a set of interconnected Riccati
difference equations, and on a set of other recursive equations. Some closed formulas are also derived for
two special cases, extending some previous results in the literature. We apply the results to a numerical
example with real data for risk control over bankruptcy in a dynamic portfolio selection problem with
Markov jumps selection problem.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The mean–variance portfolio selection problem was trans-
formedwithMarkowitz’s seminalwork inMarkowitz (1952). Since
then, research on this subject has increased, in order to provide fi-
nancial models with more realistic assumptions. Nowadays, there
is extensive literature about this subject, with some extensions,
as can be seen, for instance, in Costa and Nabholz (2002), Costa
and Paiva (2002), Howe and Rustem (1997), Howe, Rustem, and
Selby (1996), Roll (1992), Rustem, Becker, and Marty (1995) and
Steinbach (2001), among others. One of the main advantages of
the mean–variance criterion, is that it has a simple and clear in-
terpretation in terms of individual portfolio choice and utility op-
timization, although some of its drawbacks are nowadays well
known. In Li and Ng (2000), Li and Ng introduced a technique to
tackle the multi-period mean–variance problem, with market un-
certainties reproduced by stochastic models, in which the key pa-
rameters, expected return and volatility, are deterministic. This
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problem was also analyzed from a geometric point of view
in Leippold, Trojani, and Vanini (2004), for the case with in-
termediate restrictions in Costa and Nabholz (2007), for the
continuous-time case in Zhou and Li (2000), and for other related
optimization problems in Chen, Li, and Zhou (1998), Dragan and
Morozan (2004), Li and Zhou (2002), Li, Zhou, and Rami (2003), Lim
and Zhou (1999) and Liu, Yin, and Zhou (2005).More recently there
has been an increased interest in the study of financial models in
which those key parameters are modulated by aMarkov chain, see
for instance Bäuerle andRieder (2004), Çakmak andÖzekici (2006),
Yin and Zhou (2004), Zhang (2000) and Zhou and Yin (2003). Such
models can better reflect themarket environment, since the overall
assets usuallymove according to amajor trend given by the state of
the underlying economy, or by the general mood of the investors.

The generalized multi-period mean–variance problem can be
seen as an stochastic control problem, in which the objective
function is formed by a weighted sum of a linear combination
of the expected value, and square of the expected value of the
wealth, and the expected value of the square of the wealth.
As we are going to see next, a great variety of mean–variance
models with intermediate restrictions and/or intermediate costs
in the objective function can be derived from this generalized
formulation. The usefulness of adopting this kind of criterion, is
that in several situations, investor managers have to report their
portfolio’s return on a periodic basis to their beneficiaries, clients
or to governmental authorities, so that intermediate performances
are as important as the final one. Therefore more traditional
mean–variance problems, which regards the performance only
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at the final value, would not be the most appropriate for these
situations.

One example of the generalized multi-period mean–variance
problemwould be the case inwhich the linear combination reflects
a trade-off between the expected value and the risk (variance)
of the portfolio. For problems with constraints on the expected
wealth and/or variance of the wealth, a primal–dual method
is normally used, consisting of two optimization problems. For
example, in Zhu, Li, andWang (2004), the authors introduced a risk
control over bankruptcy problem for dynamic portfolio selection.
The basic idea is to control the probability of a portfolio falling
below a specified level. Using the Tchebycheff inequality, the
constraints arewritten in terms of the expected value and variance
of thewealth. The first Lagrangianmaximization problem,which is
a multi-period generalized mean–variance problem, is formed by
attaching to the objective function the constraints multiplied by
the nonnegative Lagrangian multipliers. As remarked in Zhu et al.
(2004), one key difficulty in solving this multi-period generalized
mean–variance problem is the non-separability of the associated
stochastic control problem, from the dynamic point of view. A
solution procedure is presented in Zhu et al. (2004) based on an
auxiliary problem, solvable by using dynamic programming, with
a vector of auxiliary parameters, named λ. The solution of the
first Lagrangian maximization problem is then achieved in Zhu
et al. (2004) by setting the value of λ as the solution of a set
of linear equations, if the inverse of an appropriate matrix exists
or, otherwise, by a line search method. After this, the Lagrangian
dual minimization problem must be solved over the Lagrangian
multipliers (see Zhu et al. (2004)).

In general, mean–variance problems with restrictions would
require a numerical procedure, as described above, to solve the
dual minimization problem. However there are some special
situations in which an exact solution can be derived analytically.
The cases in which there is a restriction only on the final time
T and the objective function considers only the final value of
the variance or expected value of the wealth correspond to
the traditional multi-period Markowitz’s mean–variance selection
problems. These problems were solved analytically in Li and Ng
(2000) for the case with no Markovian jumps, and in Çakmak and
Özekici (2006); Zhou and Yin (2003) for the Markovian jump case,
with closed formulas for the optimal control strategy derived. The
case inwhich there are intermediate restrictions but no jumpswas
analyzed in Costa and Nabholz (2007).

In this paper, we consider a multi-period generalized mean–
variance model with Markov switching in the key market
parameters. As in Zhu et al. (2004), we consider an auxiliary
problem treatable from the dynamic point of view to analyze this
problem, with an auxiliary vector of parameters λ. Our main result
is to derive necessary and sufficient conditions for obtaining an
optimal control policy for thismulti-periodMarkovian generalized
mean–variance problem, based on a set of interconnected Riccati
difference equations, and some other recursive equations, which
lead to recursive procedures for obtaining the desired solution. It
is important to stress that previous papers on this subject (Çakmak
& Özekici, 2006; Li & Ng, 2000; Zhu et al., 2004) obtained only
necessary conditions for optimality of the control strategy. As
far as the authors are aware, no sufficient condition had been
obtained before. The closed solutions of two special cases are also
provided, extending some previous results in the literature. When
compared with the no jumps case, our expression for the auxiliary
parameter λ is presented in a more explicit form than that in Zhu
et al. (2004), providing a more direct way to compute the optimal
control strategy for the multi-period generalized mean–variance
problem. Moreover, we apply the obtained results to investigate a
numerical example with real data for risk control over bankruptcy
in a dynamic portfolio selection problem with Markov jumps
selection problem.

This paper is organized as follows. In Section 2 we formulate
the model and the problems to be investigated. In Section 3,
an optimal control policy for an auxiliary problem, as well as
the expected value and variance of the investor’s wealth are
analytically derived. Such a policy is obtained from the solution
of a set of interconnected Riccati difference equations. Our main
results are in Section 4, where we provide necessary and sufficient
conditions for the solution of the generalized mean–variance
problem, and a set of recursive equations, one set based on
the necessary condition, and another set based on the sufficient
condition, to derive the solution of the problem. The closed
solution of two particular mean–variance problems are obtained
in Section 5. A numerical simulation for the risk control over
bankruptcy is investigated in Section 6. The paper is concluded in
Section 7 with some final remarks.

2. Problem formulation

2.1. Definitions and the financial model

Throughout the paper we shall denote by Rn the n-dimensional
Euclidean real space and by Rn×m the Euclidean space of all n × m
real matrices. For a sequence of numbers a1, . . . , am, we shall
denote by diag(ai) the diagonal matrix in Rm×m formed by the
element ai at the ith diagonal, i = 1, . . . ,m. The superscript ′

will denote the transpose of a vector or matrix. The variance of a
random variable X will be denoted by Var(X).

We will consider a financial market with n + 1 risky securities
on a complete filtered probability space (Ω,F , {Ft} ,P ). The
assets’ price will be described by the random vector S̄ (t) =

(S0 (t) , . . . , Sn (t))′ taking values in Rn+1 with t = 0, . . . , T . Set
R̄ (t) = (R0(t), . . . , Rn(t))′, with Ri(t) =

Si(t+1)
Si(t)

. We assume that
the random vector R̄ (t) satisfies the following equation:

R̄ (t) = [ē + µ̄θ(t) (t)] + σ̄θ(t) (t)W (t) , (1)

where ē =
(
1, e′

)′, with e ∈ Rn a vector with 1′s in all its com-
ponents. Here {θ (t) ; t = 0, . . . , T } is a finite-state discrete-time
Markov chain with state space M = {1, . . . ,m}, and {W (t); t =

0, . . . , T } is a sequence of (n + 1)-dimensional independent ran-
dom vectors with zero mean and covariance I (identity matrix).
We assume that {W (t) , θ (t)} are mutually independent, and that
the underlying Markov state {θ(t)} is observable. From (1), the
expected return, variance and covariance of the assets at time
t are affected by local or global factors, which are represented
by the market operation mode θ(t) ∈ M. P is a probabil-
ity measure such that P (θ (t + 1) = j|θ (0) , . . . , θ (t) = i) =

P (θ (t + 1) = j|θ (t) = i) = pij (t), pij (t) ≥ 0 and
∑

j∈M pij (t) =

1, for t = 0, . . . , T − 1 and i, j ∈ M. We set for t = 0, . . . , T ,
P (t) =

[
pij (t)

]
m×m ∈ Rm×m, πi (t) = P (θ (t) = i), π (t) =

(π1 (t) , . . . , πm (t))′. As pointed out in Yin and Zhou (2004), page
351, (1) can be seen as a frequently used discrete-time approxi-
mation of the geometric Brownian motion model of stock prices
return in continuous-time. Although this approximation does not
necessarily produce nonnegative stock prices, in practice, it is es-
sentially the same as the discrete-time approximation obtained
from the geometric formulation, which ensures non negativity of
stock prices, see Yin and Zhou (2004).

As in Costa, Fragoso, andMarques (2005), for z = (z1, . . . , zm)′ ∈

Rm, we define the operator E (z, t) = (E1 (z, t) , . . . , Em (z, t)) as
Ei (z, t) =

∑m
j=1 pij (t) zj, for i ∈ M. For notational simplicity, we

shall omit from now on the variable t in Ei (z, t). The filtration Ft
is such that the random vectors {S̄ (k) ; k = 0, . . . , t} and Markov
chain {θ (k) ; k = 0, . . . , t} are Ft-measurable.

When the market operation mode is θ(t) = i ∈ M, µ̄i (t) ∈

Rn+1 represents the vector with the expected returns of the assets,
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