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a b s t r a c t

Control systems are usually modeled by differential equations describing how physical phenomena can
be influenced by certain control parameters or inputs. Although these models are very powerful when
dealing with physical phenomena, they are less suited to describe software and hardware interfacing
with the physical world. For this reason there is a growing interest in describing control systems
through symbolic models that are abstract descriptions of the continuous dynamics, where each ‘‘symbol’’
corresponds to an ‘‘aggregate’’ of states in the continuous model. Since these symbolic models are of the
same nature of the models used in computer science to describe software and hardware, they provide a
unified language to study problems of control in which software and hardware interact with the physical
world. Furthermore, the use of symbolic models enables one to leverage techniques from supervisory
control and algorithms from game theory for controller synthesis purposes. In this paper we show that
every incrementally globally asymptotically stable nonlinear control system is approximately equivalent
(bisimilar) to a symbolic model. The approximation error is a design parameter in the construction of the
symbolic model and can be rendered as small as desired. Furthermore, if the state space of the control
system is bounded, the obtained symbolic model is finite. For digital control systems, and under the
stronger assumption of incremental input-to-state stability, symbolicmodels can be constructed through
a suitable quantization of the inputs.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The idea of using models at different levels of abstraction has
been successfully used in the formal methods community with
the purpose of mitigating the complexity of software verification.
A central notion when dealing with complexity reduction, is the
one of bisimulation equivalence, introduced by Milner (1989) and
Park (1981) in the 80s’. The key idea is to find and compute
an equivalence relation on the state space of the system that
respects the system dynamics. This equivalence relation induces
a new system on the quotient space that shares most properties
of interest with the original model. This approach leads to an
alternative methodology for the analysis and control of large-
scale control systems. In fact, from the analysis point of view,
symbolic models provide a unified framework for describing
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continuous systems as well as hardware and software interacting
with the physical environment. Furthermore, the use of symbolic
models allows one to leverage the rich literature on supervisory
control (Ramadge & Wonham, 1987) and algorithmic approaches
to game theory (Arnold, Vincent, & Walukiewicz, 2003), for
controller design.

After the pioneering work of Alur and Dill (1994) that showed
existence of symbolicmodels for timed automata, researchers tried
to identify more general classes of continuous systems admitting
finite bisimulations. The existing results can be roughly classified
into four main different lines of research:

(i) Simulation/bisimulation: symbolic models have been studied
in Girard (2007), Tabuada (2007) and Tabuada and Pappas
(2006) for discrete-time control systems, in Tabuada (2008)
for continuous-time control systems and in Lafferriere,
Pappas, and Sastry (2000) for o-minimal hybrid systems
among others. Reduction of continuous control systems to
continuous control systems with lower dimensional state
space has been addressed in Grasse (2007), Pola, van der
Schaft, and Di Benedetto (2006), Tabuada and Pappas (2004)
and van der Schaft (2004);

(ii) Quantized control systems: finite abstractions have been
studied in Bicchi, Marigo, and Piccoli (2002, 2006) for certain
classes of control systems with quantized inputs;
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(iii) Qualitative reasoning: symbolic models were constructed
using methods of qualitative reasoning in Kuipers (1994) and
Ramamoorthy and Kuipers (2003);

(iv) Stochastic automata: abstractions of continuous-time control
systems by means of stochastic automata have been studied
in Lunze and Nixdorf (2001) and Schroder (2003).

We defer to the last section of the paper a comparison
between the results presented in this paper and the above lines
of research. In this paper we follow the line of research based on
simulation/bisimulation by making use of the recently introduced
notion of approximate bisimulation (Girard & Pappas, 2007),
that captures equivalence of systems in an approximate setting.
By relaxing the usual notion of bisimulation to approximate
bisimulation, a larger class of control systems can be expected
to admit symbolic models. In fact the work in Tabuada (2008)
shows that for every asymptotically stabilizable control system
it is possible to construct a symbolic model, which is based
on an approximate notion of simulation (one-sided version of
bisimulation). However, if a controller fails to exist for the symbolic
model, nothing can be concluded regarding the existence of
a controller for the original model. This drawback is a direct
consequence of the one-sided notion used in Tabuada (2008). For
this reason, an extension of the results in Tabuada (2008) from
simulation to bisimulation is needed. The aim of this paper is
precisely to provide such extension. The key idea in the results
that we propose is to replace the assumption of asymptotic
stabilizability of Tabuada (2008) with the stronger notion of
asymptotic stability. We show that every incrementally globally
asymptotically stable nonlinear control system admits a symbolic
model that is an approximate bisimulation, with a precision that
is a-priori defined, as a design parameter. Furthermore, if the state
space of the control system is bounded, the symbolic model is
finite. Moreover, for incrementally input-to-state stable digital control
systems, i.e. systems where control signals are piecewise-constant, a
symbolic model can be obtained by quantizing the space of inputs.
As an illustrative example, we apply the proposed techniques to
a control design problem for a pendulum. A preliminary version of
these results appeared in Pola, Girard, and Tabuada (2007).

2. Control systems and stability notions

2.1. Notations

The symbols N, Z, R, R+ and R+

0 denote the natural, integers,
real, positive and nonnegative real numbers, respectively. Given
a vector x ∈ Rn we denote by x′ the transpose of x and by xi
the i-th element of x; furthermore ‖x‖ denotes the infinity norm
of x; we recall that ‖x‖ := max{|x1|, |x2|, . . . , |xn|}, where |xi|
is the absolute value of xi. The symbol Bε(x) denotes the closed
ball centered at x ∈ Rn with radius ε ∈ R+

0 , i.e. Bε(x) = {y ∈

Rn
: ‖x − y‖ ≤ ε}. For any A ⊆ Rn and µ ∈ R+ define

[A]µ := {a ∈ A | ai = kiµ, ki ∈ Z, i = 1, . . . , n}. The set [A]µ
will be used in the subsequent developments as an approximation
of the set Awith precisionµ. By geometrical considerations on the
infinity norm, for any µ ∈ R+ and λ ≥ µ/2 the collection of
sets {Bλ(q)}q∈[Rn]µ is a covering of Rn, i.e. Rn

⊆
⋃

q∈[Rn]µ
Bλ(q);

conversely for any λ < µ/2, Rn
6⊆

⋃
q∈[Rn]µ

Bλ(q).
We now recall from Khalil (1996) and Sontag (1998) some

notions that will be employed in Sections 2.2 and 2.3 to define
trajectories and some stability notions for control systems. A
function f : [a, b] → Rn is said to be absolutely continuous on
[a, b] if for any ε ∈ R+ there exists δ ∈ R+ so that for every k ∈ N
and for every sequence of points a ≤ a1 < b1 < a2 < b2 <
· · · < ak < bk ≤ b, if

∑m
i=1(bi − ai) < δ then

∑m
i=1 |f (bi) −

f (ai)| < ε. A function f : ]a, b[→ Rn is said to be locally absolutely
continuous if the restriction of f to any compact subset of ]a, b[ is
absolutely continuous. Given a measurable function f : R+

0 → Rn,
the (essential) supremum of f is denoted by ‖f ‖∞; we recall that

‖f ‖∞ := (ess) sup{‖f (t)‖, t ≥ 0}; f is essentially bounded if
‖f ‖∞ < ∞. For a given time τ ∈ R+, define fτ so that fτ (t) = f (t),
for any t ∈ [0, τ ), and f (t) = 0 elsewhere; f is said to be locally
essentially bounded if for any τ ∈ R+, fτ is essentially bounded. A
function f : Rn

→ R is said to be radially unbounded if f (x) → ∞

as ‖x‖ → ∞. A continuous function γ : R+

0 → R+

0 , is said to
belong to class K if it is strictly increasing and γ (0) = 0; γ is
said to belong to class K∞ if γ ∈ K and γ (r) → ∞ as r → ∞.
A continuous function β : R+

0 × R+

0 → R+

0 is said to belong to
class KL if for each fixed s, the map β(r, s) belongs to class K∞

with respect to r and, for each fixed r , themap β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s → ∞. The following notions
will be used in Sections 3–5 to define the concept of approximate
bisimulation and the symbolic models that we propose in this
paper. The identity map on a set A is denoted by 1A. Given two sets
A and B, if A is a subset of B we denote by ıA : A ↪→ B or simply
by ı the natural inclusion map taking any a ∈ A to ı(a) = a ∈ B.
Given a function f : A → B the symbol f (A) denotes the image of
A through f , i.e. f (A) := {b ∈ B : ∃a ∈ A s.t. b = f (a)}. We identify
a relation R ⊆ A × Bwith the map R : A → 2B defined by b ∈ R(a)
if and only if (a, b) ∈ R. Given a relation R ⊆ A × B, R−1 denotes
the inverse relation of R, i.e. R−1

:= {(b, a) ∈ B × A : (a, b) ∈ R}.

2.2. Control systems

The class of control systems that we consider in this paper is
formalized in the following definition.

Definition 2.1. A control system is a quadrupleΣ = (Rn,U,U, f ),
where:
• Rn is the state space;
• U ⊆ Rm is the input space;
• U is a subset of the set of all locally essentially bounded

functions of time from intervals of the form ]a, b[⊆ R toU with
a < 0 and b > 0;

• f : Rn
× U → Rn is a continuous map satisfying the following

Lipschitz assumption: for every compact set K ⊂ Rn, there
exists a constant κ > 0 such that ‖f (x, u)−f (y, u)‖ ≤ κ‖x−y‖,
for all x, y ∈ K and all u ∈ U .

A locally absolutely continuous curve x : ]a, b[→ Rn is said to be a
trajectory ofΣ if there exists u ∈ U satisfying ẋ(t) = f (x(t),u(t)),
for almost all t ∈ ]a, b[. Althoughwe have defined trajectories over
open domains,we shall refer to trajectories x :[0, τ ] → Rn defined
on closed domains [0, τ ], τ ∈ R+ with the understanding of the
existence of a trajectory z : ]a, b[→ Rn such that x = z|[0,τ ].
We will also write x(t, x,u) to denote the point reached at time
t ∈ ]a, b[ under the input u from initial condition x; this point is
uniquely determined, since the assumptions on f ensure existence
and uniqueness of trajectories (Sontag, 1998).

A control system Σ is said to be forward complete if every
trajectory is defined on an interval of the form ]a,∞[. Sufficient
and necessary conditions for a system to be forward complete can
be found in Angeli and Sontag (1999). Simpler, but only sufficient,
conditions for forward completeness are also available in the
literature. These include linear growth or compact support of the
vector field (see e.g. Lee and Markus (1967)).

2.3. Stability notions

The results presented in this paper will assume certain stability
assumptions that we briefly recall in this section.

Definition 2.2 (Angeli, 2002). A control system Σ is incrementally
globally asymptotically stable (δ-GAS) if it is forward complete and
there exists a KL function β such that for any t ∈ R+

0 , any
x, y ∈ Rn and any u ∈ U the following condition is satisfied:

‖x(t, x,u)− x(t, y,u)‖ ≤ β(‖x − y‖ , t). (1)
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