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a b s t r a c t

We present a PDE observer that estimates the velocity, pressure, electric potential and current fields in a
magnetohydrodynamic (MHD) channel flow, also known as Hartmann flow. This flow is characterized by
an electrically conducting fluid moving between parallel plates in the presence of an externally imposed
transverse magnetic field. The system is described by the inductionless MHD equations, a combination
of the Navier–Stokes equations and a Poisson equation for the electric potential under the so-called
inductionless MHD approximation in a low magnetic Reynolds number regime. We identify physical
quantities (measurable on the wall of the channel) that are sufficient to generate convergent estimates
of the velocity, pressure, and electric potential field away from the walls. Our observer consists of a
copy of the linearized MHD equations, combined with linear injection of output estimation error, with
observer gains designed using backstepping. Pressure, skin friction and current measurements from one
of the walls are used for output injection. For zero magnetic field or nonconducting fluid, the design
reduces to an observer for theNavier–Stokes Poiseuille flow, a benchmark for flow control and turbulence
estimation. We show that for the linearized MHDmodel the estimation error converges to zero in the L2
norm. Despite being a subject of practical interest, the problem of observer design for nondiscretized 3-D
MHD or Navier–Stokes channel flow has so far been an open problem.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have been marked by dramatic advances in
active flow control, but developments have had little effect on
conducting fluidsmoving inmagnetic fields. There are some recent
results in stabilization though, for instance using nonlinear model
reduction (Baker & Christofides, 2002), open-loop control (Berger,
Kim, Lee, & Lim, 2000) and optimal control (Debbagh, Cathalifaud,
& Airiau, 2007). Some experimental results are available, showing
that control of such flows is technologically feasible; actuators
consist of magnets and electrodes (Breuer & Park, 2004; Pang
& Choi, 2004; Thibault & Rossi, 2003). Mathematical studies of
controllability of magnetohydrodynamic flows have been done,
though they do not provide explicit controllers (Barbu, Popa,
Havarneanu, & Sritharan, 2003; Sritharan, Barbu, Havarneanu, &
Popa, 2005). Despite being a subject of obvious practical interest,
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there are no previous results focusing on estimation of the velocity
and electromagnetic fields for conducting fluids.

In this paper, we consider an incompressible MHD channel
flow, also known as the Hartmann flow, a benchmark model for
applications such as cooling systems (computer systems, fusion
reactors), hypersonic flight, propulsion and laser applications. In
this flow, an electrically conducting fluid moves between parallel
plates and is affected by an imposed transverse magnetic field.
When a conducting fluid moves in the presence of a magnetic
field, it produces an electric field due to charge separation and
subsequently an electric current. The interaction between this
created electric current and the imposed magnetic field originates
a body force, called the Lorentz force, which acts on the fluid
itself. The velocity and electromagnetic fields are mathematically
described by theMHDequations (Muller & Buhler, 2001; Sermange
& Temam, 1983), which are the Navier–Stokes equations coupled
with the Maxwell equations.

Our observer obtains an estimate of the whole velocity,
pressure, electric potential and current fields, derived only from
wall measurements. Obtaining such an estimate can be of interest
in itself, depending on the application. For example, the absence
of effective state estimators modeling turbulent fluid flows is
considered one of the key obstacles to reliable, model-based
weather forecasting. In other engineering applications in which
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active control is needed, such as drag reduction (Pang & Choi,
2004) or mixing enhancement for cooling systems (Schuster
& Krstic, 2003), designs usually assume unrealistic full state
knowledge, therefore a state estimator is necessary for effective
implementation.

This paper extends our previous work for estimation of the
velocity field in a 2-D channel flow (Vazquez & Krstic, 2005). Our
observer is designed for the continuumMHDmodel and consists of
a copy of the plant together with output injection of measurement
error. We identify which physical quantities (measurable on the
wall of the channel) are sufficient to generate convergent estimates
of the velocity, pressure, and electric potential field away from
the walls. The main idea of the design is to apply the observer
backstepping design method for parabolic PDEs (Smyshlyaev &
Krstic, 2005) to the estimator error system; this system is similar
to the Orr–Sommerfeld–Squire system of PDE’s and presents the
same difficulties (nonnormality leading to a large transient growth
mechanism (Jovanovic & Bamieh, 2005; Schmid & Henningson,
2001)). Thus, applying the same ideas as in Cochran, Vazquez,
and Krstic (2006), we use Fourier transform methods and some
of the output injection gains to cast the system in a form
where backstepping is applicable. Then, we design the remaining
output injection gains not only to guarantee stability but also
to decouple the system in order to prevent transients. The
output injection gains can be computed solving linear hyperbolic
PDEs—a much simpler task than, for instance, solving nonlinear
Riccati equations (Smyshlyaev & Krstic, 2004). The observer needs
measurements of pressure, skin friction and current at only one of
the channel walls.

If the fluid is not conductive, or there is no magnetic field,
the problem reduces to the Poiseuille channel flow problem
and our observer design still holds. Frequently cited as a
paradigm for transition to turbulence (Schmid & Henningson,
2001), the Poiseuille flow is a prototypical problem for flow control
and turbulence estimation. There are many results in channel
flow stabilization, for instance, using optimal control (Hogberg,
Bewley, & Henningson, 2003), backstepping (Vazquez & Krstic,
2007), spectral decomposition/pole placement (Barbu, 2006;
Triggiani, 2007), Lyapunov design/passivity (Aamo & Krstic, 2002;
Balogh, Liu, & Krstic, 2001), or nonlinear model reduction/in-
domain actuation (Baker, Armaou, & Christofides, 2000). Observer
designs are more scarce; apart from the continuum backstepping
approach (Vazquez & Krstic, 2005), previous works were in the
form of an Extended Kalman Filter for the spatially discretized
Navier–Stokes equations, employing high-dimensional algebraic
Riccati equations for computation of observer gains (Chevalier,
Hoepffner, Bewley, & Henningson, 2006; Hoepffner, Chevalier,
Bewley, & Henningson, 2005).

The paper is organized as follows. Section 2 introduces the
governing equations of our system. The equilibrium profile
is presented in Section 3 and the observer structure and
measurements are introduced in Section 4. Section 5 presents the
design of the output injection gains to guarantee convergence
of the observer estimates. In Section 6 we present a nonlinear
estimator based on the linear design. We finish the paper with
some concluding remarks in Section 7.

2. Model of the Hartmann flow

Consider an incompressible conducting fluid enclosed between
two plates, separated by a distance L, under the influence of a
pressure gradient ∇P and a magnetic field B0 normal to the walls,
as shown in Fig. 1. Under the assumption of a very small magnetic
Reynolds number

ReM = νρσU0L � 1, (1)

Fig. 1. Hartmann flow.

where ν is the viscosity of the fluid, ρ the density of the fluid,
σ the conductivity of the fluid, and U0 the reference velocity
(maximum velocity of the equilibrium profile), the dynamics of
themagnetic field can be neglected and the dimensionless velocity
and electric potential field is governed by the inductionless MHD
equations (Lee & Choi, 2001).

We set nondimensional coordinates (x, y, z), where x is the
streamwise direction (parallel to the pressure gradient), y the wall
normal direction (parallel to the magnetic field), z the spanwise
direction, andwhere (x, y, z) ∈ (−∞,∞)×[0, 1]×(−∞,∞). Let
ft denote the timederivative of a function f , similarly fx, fy and fz the
derivatives with respect to x, y and z, and define the 3-D Laplacian
operator as 4 = ∂xx + ∂yy + ∂zz . The governing equations of the
Hartmann flow are

Ut =
4U
Re

− UUx − VUy − WUz − Px + Nφz − NU, (2)

Vt =
4V
Re

− UVx − VVy − WVz − Py, (3)

Wt =
4W
Re

− UWx − VWy − WWz − Pz − Nφx − NW , (4)

4φ = Uz − Wx, (5)
where U(t, x, y, z), V (t, x, y, z) and W (t, x, y, z) denote, respec-
tively, the streamwise, wall-normal and spanwise velocities,
P(t, x, y, z) the pressure, φ(t, x, y, z) the electric potential, Re =

U0L
ν

is the Reynolds number andN =
σ LB20
ρU0

the Stuart number. Since
the fluid is incompressible, the continuity equation is verified
Ux + Vy + Wz = 0. (6)
The boundary conditions for the velocity field are
U(t, x, 0, z) = U(t, x, 1, z) = 0, (7)
V (t, x, 0, z) = V (t, x, 1, z) = 0, (8)
W (t, x, 0, z) = W (t, x, 1, z) = 0, (9)
and assuming perfectly conducting walls, the electric potential
must verify
φ(t, x, 0, z) = φ(t, x, 1, z) = 0. (10)
The nondimensional electric current, j(t, x, y, z), is a vector field
that can be directly computed from the electric potential and
velocity fields as follows,

jx(t, x, y, z) = −φx − W , (11)

jy(t, x, y, z) = −φy, (12)

jz(t, x, y, z) = −φz + U, (13)
where jx, jy, and jz denote the components of j.

Remark 1. If we set N = 0 (zero magnetic field, or nonconducting
fluid) in Eqs. (2)–(5), they reduce to the classical Navier–Stokes
equations without body forces. Then Eqs. (2)–(4) and (6)–(9)
describe a pressure driven channel flow, the so-called Poiseuille
flow.
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