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a b s t r a c t

The problems of stability, state feedback control and static output feedback control for a class of discrete-
time singular hybrid systems are investigated in this paper. A new sufficient and necessary condition for
a class of discrete-time singular hybrid systems to be regular, causal and stochastically stable is proposed
in terms of a set of coupled strict linear matrix inequalities (LMIs). Sufficient conditions are proposed for
the existence of state feedback controller and static output feedback controller in terms of a set of coupled
strict LMIs, respectively. Finally, two illustrative examples are provided to demonstrate the applicability
of the proposed approach.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Many physical systems can have different structures due to
random abrupt changes, which may be caused by random failures
and repairs of the components, changes in the interconnections
of subsystems, sudden environment changes, modification of the
operating point of a linearized model of a nonlinear system, etc.
Such systems can bemodeled as hybrid oneswith two components
in the state vector. One is system state, the other is a discrete
variable called system mode. A special class of hybrid systems
is the so-called Jump Linear System (JLS). JLS is a hybrid system
with many operation modes. In the JLS, each mode corresponds
to a deterministic dynamical behavior, and the random jumps
in system parameters are governed by a Markov process which
takes values in a finite set. A number of control problems related
to continuous- or discrete-time JLS has been analyzed by several
authors since themid 1960s, see, e.g. Aberkane, Ponsart, and Sauter
(2006), Blair and Sworder (1975), Boukas, Liu, and Liu (2001),
Boukas and Shi (1998), de Souza (2006), Shi and Boukas (1997),
Shi, Boukas, and Agarwal (1999), Xie, Ogai, Inoe, and Ohata (2006)
and Zhang, Basin, and Skliar (2006) and the references therein.
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As far as we know, a singular system is also a natural
representation of dynamic systems and describes a larger class
of systems than the normal linear system model. The singular
form is useful to represent and handle systems such as mechanical
systems, electric circuits, interconnected systems, and so on. In the
past decades, control for singular systems has been extensively
studied and many notions and results in state-space systems
have been extended to singular systems, such as stability and
stabilization (see, e.g. Boukas, Xu, and Lam (2005), Dai (1989), Xu
and Lam (2004) and Xu and Yang (1999)), H∞ control problem
(see, e.g. Masubuchi, Kamime, Ohara, and Suda (1997) and Xia
and Jia (2003)), mixed H2/H∞ control (see, e.g. Xia, Shi, Liu, and
Rees (2005) and Zhang, Huang, and Lam (2003)), filtering problem
(see, e.g. Xu, Lam, and Zou (2003) and Yue and Han (2004)), and
so on. In recent years, more and more attention has been paid to
deriving strict LMI condition for stability analysis and controller
design, see, e.g. Uezato and Ikeda (1999), Xu, Van Dooren, Stefan,
and Lam (2002) and Zhang et al. (2003) for continuous singular
system, and Xu and Lam (2004) and Zhang, Xia, and Shi (2008) for
discrete singular system. The strict LMI conditions, that is, definite
LMIs without equality constraints, are highly tractable and reliable
when we use recent popular softwares for solving LMIs. More
recently, continuous singular systems with Markovian switching
have been extensively studied, see for example Boukas (2005,
2006a,b, 2007) and references therein, and the LMI conditions
are not in the strict LMI settings. Moreover, to date and to
the best of our knowledge, for a discrete singular system with
Markovian jump parameters, the problem of stability, stabilization
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and feedback control has not been fully investigated yet Lam, Shu,
Xu, and Boukas (2007). This problem is important and challenging
in both theory and practice, which motivated us for this study.

In this paper, firstly, we consider the problems of stability for
discrete-time singular hybrid systems. A sufficient and necessary
condition for a discrete-time singular hybrid system to be regular,
causal and stochastically stable is proposed in terms of strict linear
matrix inequalities (LMIs). Next, the state feedback controller and
static output feedback controller for discrete-time singular hybrid
systems are proposed. Finally, two illustrative examples are given
to show the effectiveness of the proposed approach.

2. Problem formulation

Let the dynamics of the class of discrete-time singular systems
with Markovian jumps be described by the following:

Exk+1 = A(rk)xk + B(rk)uk (1)

yk = C(rk)xk (2)

where, for k ∈ Z, xk ∈ Rn is the descriptor variable, uk ∈ Rm is
the control input and yk ∈ Rq is the controlled output. {rk, k ∈ Z}

is a time homogeneous Markov chain taking values in a finite set
S = {1, 2, . . . ,N}, with stationary transition probability matrix
Π = [πij]N×N , where πij = Pr{rk+1 = j|rk = i} with πij ≥ 0,
for i, j ∈ S, and

∑N
j=1 πij = 1. The matrix E ∈ Rn×n is supposed

to be singular with rank(E) = r < n. A(rk) ∈ Rn×n, B(rk) ∈

Rn×m and C(rk) ∈ Rq×n, for rk = i, i ∈ S are known real-
valued constant matrices of appropriate dimensions that describe
the nominal system and C(rk) for rk = i, i ∈ S are assumed to be
of full row rank for simplicity.

Definition 1 (Xu & Lam, 2006).
I. The discrete singular hybrid system in (1) is said to be regular

if, for each i ∈ S, det(sE − A(i)) is not identically zero.
II. The discrete singular hybrid system in (1) is said to be causal if,

for each i ∈ S, deg(det(sE − A(i))) = rank(E).
III. The discrete singular hybrid system in (1) is said to be

stochastically stable if for any x0 ∈ Rn and r0 ∈ S, there exists
a scalarM(x0, r0) > 0 such that

lim
N→∞

E

{
N∑

k=0

‖x(k, x0, r0)‖2
|x0, r0

}
≤ M(x0, r0),

where x(k, x0, r0) denote the solution to system (1) at time k
under the initial conditions x0 and r0.

IV. The discrete singular hybrid system in (1) is said to be stochasti-
cally admissible if it is regular, causal and stochastically stable.

Definition 2. System (1) is said to be regular, causal and stochasti-
cally stabilizable via state feedback (static output feedback) if there
exists a control

uk = K(rk)xk (3)

or

uk = K(rk)yk (4)

with K(i), when rk = i, is a constant matrix, such that the closed-
loop system is stochastically admissible.

The objective of this paper is to:

I. develop LMI-based conditions for system (1) with u(t) ≡ 0 to
check if system (1) is stochastically admissible;

II. design a state feedback controller of the form (3) that renders
the closed-loop system to be stochastically admissible; and

III. design a static output feedback controller of the form (4) that
makes the closed-loop system stochastically admissible.

3. Stability analysis

In this section, we analyze the stochastic stability of system (1).
Our attention will be paid to establishing strict LMI conditions to
check the regularity, causality and stochastic stability of system (1).
Firstly, we recall the stability results based on nonstrict conditions,
then change them into strict ones.

Lemma 3 (Xu & Lam, 2006). System (1) is stochastically admissible
if and only if there exist symmetric matrices P(i), i ∈ S, such that the
following coupled LMIs hold for each i ∈ S:

ETP(i)E ≥ 0, (5)

AT(i)P̄(i)A(i) − ETP(i)E < 0, (6)

where P̄(i) =
∑N

j=1 πijP(j).

Define R ∈ Rn×n as the matrix with the properties of ETRT
= 0

and rank R = n − r , which is used in all the subsequent results.

Theorem 4. System (1) is stochastically admissible if and only if there
exist a set of symmetric-positive-definite matrices P(i), i ∈ S and a
symmetric and nonsingular matrixΦ , such that the following coupled
LMIs hold for each i ∈ S:

AT(i)
(
P̄(i) − RTΦR

)
A(i) − ETP(i)E < 0, (7)

where P̄(i) =
∑N

j=1 πijP(j).

Proof. Sufficiency. Let Y (i) = P(i) − RTΦR in (7), we can get

ETY (i)E = ET(P(i) − RTΦR)E = ETP(i)E ≥ 0, (8)

AT(i)Ȳ (i)A(i) − ETY (i)E < 0, (9)

where Ȳ (i) =
∑N

j=1 πijY (j).
Necessity. Suppose that system (1) is stochastically admissible.

Now, we choose two nonsingular matricesM and N such that

E = M
[
I 0
0 0

]
N, A(i) = M

[
A1(i) A2(i)
A3(i) A4(i)

]
N. (10)

From Xu and Lam (2006), we know that the regularity and
causality of (1) imply that A4(i) is nonsingular for any i ∈ S. Then,
select a nonsingular matrix as

L(i) =

[
I −AT

3(i)A
−T
4 (i)

0 I

]
,

and let Ñ(i) = N−1LT(i). Then, it can be verified that

Ẽ = M−1EÑ(i) =

[
I 0
0 0

]
, (11)

Ã(i) = M−1A(i)Ñ(i) =

[
Ã1(i) A2(i)
0 A4(i)

]
, (12)

where Ã1(i) = A1(i) − A2(i)A−1
4 (i)A3(i).

Therefore, the stochastic stability of system (1) implies that the
discrete Markovian jump system

ξ(k + 1) = Ã1(rk)ξ(k),

is stochastically stable. It follows that there existmatrices P̃(i) > 0,
i ∈ S, such that

ÃT
1(i)

¯̃P(i)Ã1(i) − P̃(i) < 0

where ¯̃P(i) =
∑N

j=1 πijP̃(i).



Download English Version:

https://daneshyari.com/en/article/697060

Download Persian Version:

https://daneshyari.com/article/697060

Daneshyari.com

https://daneshyari.com/en/article/697060
https://daneshyari.com/article/697060
https://daneshyari.com

