Contents lists available at ScienceDirect

Journal of Molecular Catalysis B: Enzymatic

journal homepage: www.elsevier.com/locate/molcatb

CrossMark

Microbial transformations of betulinic and betulonic acids

Animesh Goswami^{a,*,1}, Zhiwei Guo^{a,1}, Thomas P. Tully^{a,1}, Frank A. Rinaldi^{a,2}, Xiaohua Stella Huang^{b,3}, Jacob J. Swidorski^{b,4}, Alicia Regueiro-Ren^{b,4}

^a Research and Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, NJ 08903, United States ^b Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, United States

ARTICLE INFO

Article history: Received 17 March 2015 Received in revised form 16 April 2015 Accepted 20 April 2015 Available online 27 April 2015

Keywords: Betulinic acid Betulonic acid Microbial transformation Enzymatic hydroxylation Enzymatic oxidation

ABSTRACT

Enzymatic transformation of betulinic acid by growing cells of microorganisms provided several hydroxylated and oxidized products. *Bacillus megaterium* SC16644 gave 7β , 15 α -dihydroxybetulinic acid, 7β , 15 α -dihydroxybetulinic acid, and a new compound 7β , 15 α , 23-trihydroxybetulinic acid [3β , 7β , 15 α -dihydroxy-lup-20(29)en-28-oic acid]. Another strain of *B. megaterium* SC6394 produced 30-oxobetulonic acid, and a mixture of 30-hydroxybetulonic acid and a new compound 7β -hydroxy-30-oxobetulonic acid [7β -hydroxy-3, 30-dioxo-lup-20(29)en-28-oic acid]. Three products were obtained from the biotransformation of betulinic acid by *Streptomyces fragilis* SC16401: 7β -hydroxy-lup-20(29)en-28-oic acid] and 2-oxo- 7β -hydroxy-betulinic acid [2α , 3β , 7β -trihydroxy-lup-20(29)en-28-oic acid] and 2-oxo- 7β -hydroxy-betulinic acid [$2-\infty$, 3β , 7β -dihydroxy-lup-20(29)en-28-oic acid]. Cunninghamella elegans SC16025 gave 25-hydroxybetulinic acid from betulinic acid to two A-ring fission products: 4-hydroxy-3, 4-seco-lup-20(29)-en-3, 28-dioic acid and 3, 4-seco-lup-20(29), 4(23)-dien-3, 28-dioic acid. *B. megaterium* SC16644 catalyzed transformation of betulonic acid provided 7β -hydroxybetulonic acid, 7β , 15 α , 30-trihydroxybetulonic acid [$3-oxo-7\beta$, 15 α , 30-trihydroxybetulonic acid].

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Lupeol [3 β -hydroxy-lup-20(29)en] **1a**, betulin [3 β ,28dihydroxy-lup-20(29)en] **1b**, betulinic acid [3 β -hydroxylup-20(29)en-28-oic acid] **1c** and betulonic acid [3-oxo-lup-20(29)en-28-oic acid] **1d** are naturally occurring pentacyclic triterpenes belonging to the lupane group isolated from many plants. Betulinic acid (**1c**) derivatives were reported to have anticancer [1–3] and anti-HIV [4–7] activities. Several semisynthetic derivatives of betulinic acid **1c** were found to improve oral bioavailability and pharmacological activity [5–7] where the synthetic modifications were mostly centered on addition

http://dx.doi.org/10.1016/j.molcatb.2015.04.012

of sugars or polar groups to the C-3 hydroxyl and C-28 carboxyl groups of betulinic acid **1c** (Fig. 1; Table 1).

Several microbial transformations of betulinic acid and its derivatives were reported to prepare hydroxylated/oxygenated derivatives to improve the polarity and pharmacological properties. Microbial transformation of betulinic acid 1c by Cunninghamella echinulata NRRL 5695 produced C-28 β-Dglucoside 1e which showed no in vitro activity against melanoma [8]. Microbial transformation of betulinic acid 1c by Bacillus megaterium ATCC14581 produced betulonic acid 1d, 7βhydroxybetulinic acid [3\,7\,9-dihydroxy-lup-20(29)en-28-oic acid] **1f** and 6α , 7 β -dihydroxybetulinic acid [3 β , 6α , 7 β -trihydroxylup-20(29)en-28-oic acid] 1g; by C. elegans ATCC9244 gave 1β , 7β -dihydroxybetulinic acid [1β,3β,7β-trihydroxy-lup-20(29)en-28-oic acid] 1h; while Mucor mucedo UI4605 afforded 7B-hvdroxybetulinic acid [3B,7B-dihydroxy-lup-20(29)en-28-oic acid] 1f [9]. Another strain of B. megaterium ATCC13368 catalvzed the transformation of betulinic acid **1c** to four products: betulonic acid [3-oxo-lup-20(29)en-28-oic acid] **1d**. 11α hydroxybetulonic acid [3-oxo-11\alpha-hydroxy-lup-20(29)en-28-oic acid] 1i, 1B-hydroxybetulonic acid [3-oxo-1B-hydroxy-lup-20(29)en-28-oic acid] **1j** and 7β , 15α -dihydroxybetulinic acid

^{*} Corresponding author at: Chemical Development, New Brunswick, NJ, United States. Tel.: +1 732 227 6225; fax: +1 732 227 3994.

E-mail address: animesh.goswami@bms.com (A. Goswami).

¹ Chemical Development, New Brunswick, NJ, United States.

² Analytical & Bioanalytical Development, New Brunswick, NJ, United States.

³ Discovery Analytical Sciences, Wallingford, CT, United States.

⁴ Discovery Chemistry, 5 Research Parkway, Wallingford, CT, United States.

^{1381-1177/© 2015} Elsevier B.V. All rights reserved.

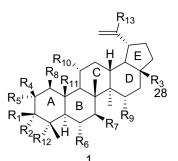


Fig. 1. Structures of starting materials and biotransformation products. See Table 1 for R groups.

 $[3\beta,7\beta,15\alpha$ -trihydroxy-lup-20(29)en-28-oic acid] 1k [10]. Microbial transformations by Chaetomium longirostre provided 4,28-dihydroxy-3,4-seco-lup20(29)en-3-oic acid 2a and 4-hydroxy-3,4-seco-lup20(29)en-3,28-dioic acid 2b from betulin **1b**, and 4,7β,17-trihydroxy-3,4-seco-28-norlup-20(29)en-3-oic acid **2c** and 7β , 15α -dihydroxybetulonic acid [7β , 15α -dihydroxy-3-oxo-lup-20(29)en-28-oic acid] 11 from betulonic acid 1d [11] where the compounds 2a-c were formed by the cleavage of ring A (Fig. 2). Biotransformations of both betulinic 1c and betulonic acids 1d by several fungi were studied $[12] - 7\beta$, 15α -dihydroxybetulonic acid $[7\beta, 15\alpha$ -dihydroxy-3-oxo-lup-20(29)en-28-oic acid] **11**, 7\betahydroxybetulonic acid [3-oxo-7β-hydroxy-lup-20(29)en-28-oic acid] **1m** and 7β,30-dihydroxybetulonic acid [7β,30-dihydroxy-3oxo-lup-20(29)en-28-oic acid] 1n were produced by betulonic acid **1d** and Arthrobotrys sp., 15α -hydroxybetulonic acid [3-oxo-15 α hydroxy-lup-20(29)en-28-oic acid] 10 was produced by betulinic acid **1c** and *Colletotrichum* sp., 7β , 15α -dihydroxybetulonic acid $[7\beta, 15\alpha$ -dihydroxy-3-oxo-lup-20(29)en-28-oic acid] 11 and 15α hydroxybetulonic acid [3-oxo-15α-hydroxy-lup-20(29)en-28-oic acid] 10 were obtained from betulonic acid 1d and Colletotrichum

Tabl	e 1
------	-----

Б		-	•	P ² ····	4
К	gro	DUDS	ın	F1g.	Т.

2a, $R_1 = CH_2OH$, $R_2 = H$, $R_4=OH$, $R_5=R_6=CH_3$ 2b, $R_1 = COOH$, $R_2 = H$, $R_4=OH$, $R_5=R_6=CH_3$ 2c, $R_1 = OH$, $R_2 = OH$, $R_4=OH$, $R_5=R_6=CH_3$ 2d, $R_1 = COOH$, $R_2 = OH$, $R_4+R_5=CH_2$, $R_6=CH_3$

Fig. 2. Structures of biotransformation products obtained via cleavage of A-ring.

sp., 25-hydroxybetulonic acid [3-oxo-25-hydroxy-lup-20(29)en-28-oic acid] **1p** from *Chaetophoma* sp. and betulonic acid **1d**, and both *Chaetophoma* sp. and *Dematium* sp. transformed betulinic acid **1c** to betulonic acid **1d**. Biotransformation of betulonic acid **1d** by *Nocardia* sp. NRRL 5646 gave methyl ester of betulonic acid [methyl 3-oxo-lup-20(29)en-28-oate] **1q** and methyl ester of 2 α -acetoxybetulonic acid [methyl 2 α -acetoxy-3-oxo-lup-20(29)en-28-oate] **1r** [13]. Both betulinic acid **1c** and betulonic acid **1d** were converted to their respective methyl esters **1s** and **1t**, respectively, by *Nocardia* sp. NRRL 5646 [13,14]

We have identified several compounds synthesized from betulinic acid **1c** with HIV maturation inhibitory activity [15–21]. In order to improve the water solubility, oral bioavailability and pharmacological properties, we sought to improve the polarity of betulinic acid **1c** core by hydroxylation/oxygenation via microbial transformations. This manuscript contains details of our work on the transformations of betulinic acid (**1c**) by two bacteria *B. megaterium, Streptomyces fragilis* and two fungi *C. echinulata* and *Aspergillus terreus*, and of betulonic acid (**1d**) by *B. megaterium*. A

Compd	R_1	R_2	R1+ R2	R ₃	R ₄	R ₅	R4+ R5	R ₆	R ₇	R ₈	R ₉	R ₁₀	R ₁₁	R ₁₂	R ₁₃
1a	OH	Н	NA	CH ₃	Н	Н	NA	Н	Н	Н	Н	Н	CH₃	CH₃	CH3
1b	OH	Н	NA	CH ₂ OH	Н	Н	NA	Н	Н	Н	Н	Н	CH₃	CH ₃	CH ₃
1c	OH	Н	NA	COOH	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1d	NA	NA	0	COOH	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1e	OH	Н	NA	COOX	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1f	OH	Н	NA	COOH	Н	Н	NA	Н	OH	Н	Н	Н	CH ₃	CH ₃	CH ₃
1g	OH	Н	NA	COOH	Н	Н	NA	OH	OH	Н	Н	Н	CH ₃	CH ₃	CH ₃
1h	OH	Н	NA	COOH	Н	Н	NA	Н	OH	OH	Н	Н	CH ₃	CH ₃	CH ₃
1i	NA	NA	0	COOH	Н	Н	NA	Н	Н	Н	Н	OH	CH ₃	CH ₃	CH ₃
1j	NA	NA	0	COOH	Н	Н	NA	Н	Н	OH	Н	Н	CH ₃	CH ₃	CH ₃
1k	OH	Н	NA	COOH	Н	Н	NA	Н	OH	Н	OH	Н	CH ₃	CH ₃	CH ₃
11	NA	NA	0	COOH	Н	Н	NA	Н	OH	Н	OH	Н	CH ₃	CH ₃	CH ₃
1m	NA	NA	0	COOH	Н	Н	NA	Н	OH	Н	Н	Н	CH ₃	CH ₃	CH ₃
1n	NA	NA	0	COOH	Н	Н	NA	Н	OH	Н	Н	Н	CH ₃	CH ₃	CH ₂ OH
10	NA	NA	0	COOH	Н	Н	NA	Н	Н	Н	OH	Н	CH ₃	CH ₃	CH ₃
1p	NA	NA	0	COOH	Н	Н	NA	Н	Н	Н	Н	Н	CH ₂ OH	CH ₃	CH ₃
1q	NA	NA	0	COOCH ₃	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1r	NA	NA	0	COOCH ₃	Н	OAc	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1s	OH	Н	NA	COOCH ₃	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1t	NA	NA	0	COOCH ₃	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1u	NA	NA	0	CH ₂ OH	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1v	OH	Н	NA	соон	Н	Н	NA	Н	OH	Н	OH	Н	CH ₃	CH ₂ OH	CH ₃
1w	NA	NA	0	COOH	Н	Н	NA	Н	OH	Н	OH	Н	CH ₃	CH ₃	CH ₂ OH
1x	NA	NA	0	СООН	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CHO
1y	NA	NA	0	СООН	Н	Н	NA	Н	OH	Н	Н	Н	CH ₃	CH ₃	CHO
1z	NA	NA	0	СООН	Н	Н	NA	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₂ OH
1aa	OH	Н	NA	СООН	Н	OH	NA	Н	OH	Н	Н	Н	CH ₃	CH ₃	CH ₃
1bb	OH	Н	NA	СООН	NA	NA	0	Н	Н	Н	Н	Н	CH ₃	CH ₃	CH ₃
1cc	OH	Н	NA	соон	Н	Н	NA	Н	Н	Н	Н	Н	CH ₂ OH	CH ₃	CH ₃

NA, not applicable; X, β-D-glucose.

Download English Version:

https://daneshyari.com/en/article/69708

Download Persian Version:

https://daneshyari.com/article/69708

Daneshyari.com