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a b s t r a c t

A piecewise affine autoregressive systemwith exogenous inputs (PWARX) is composed of a finite number
of ARX subsystems, each of which corresponds to a polyhedral partition of the regression space. In this
work a weighted least squares (WLS) estimator is suggested to recursively estimate the parameters of the
ARX submodels, in which a sequence of kernel functions are introduced. Conditions on the input signal
and the PWARX system are imposed to guarantee the almost sure convergence of the WLS estimates.
Some numerical examples are included to illustrate performances of the algorithm.
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1. Introduction

Identification of nonlinear systems has become an active topic
in recent years, both for the importance in practical applications
and for the challenge in theoretical investigation. Available
modeling approaches for nonlinear systems can roughly be divided
into three categories, the first principles based approach, the grey-
box approach and the black-box approach. The first principles
based approach usually adopts physical/chemical laws to build
accurate models for the nonlinear dynamics. This procedure is
nontrivial and the resulting models may be intricate. In grey-
box modeling, some a prior plant knowledge is available and
Kalman filter-like algorithms are often adopted. This approach
has found successful applications in area like process control
(Bohlin, 1994; Raghavan et al., 2005). Another type of method
is named as the black-box approach, in which the modeling
procedure does not depend on the physical background of the
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system. TheWiener and Hammerstein systems, the nonlinear ARX
system and the piecewise affine ARX (PWARX) system are widely
adopted in this category for system dynamics description. There
are also significant contributions on the black-box identification
(Bai, Tempo, & Liu, 2007; Pajunen, 1992; Roll, Bemporad, & Ljung,
2004; Sjoberg et al., 1995; Wigren, 2006). The nonlinear dynamics
in Pajunen (1992) and Wigren (2006) are transformed into linear
regression form and the classical approaches, for example, the
recursive prediction error approach, could be used. In Bai et al.
(2007) the identification of nonlinear ARX system is considered
and the value of the nonlinear function at a fixed point is estimated.
In this paper, we will investigate the identification of another
type of nonlinear systems, i.e. the PWARX system, which receives
special attention from both theorists and engineers.

The PWARX system is composed of a finite number of ARX
subsystems, each of which corresponds to a polyhedral partition
of the regression space. Since neither the parameters of affine
submodels nor the partition of the regression space are available,
the identification of PWARX system becomes very difficult and
many efforts have been devoted on this problem, for example, the
data-clustering technique considered in Ferrari-Trecate, Muselli,
Liberati, and Morari (2003) and Nakada, Takaba, and Katayama
(2005), the bounded error approach presented in Bemporad,
Garulli, Paoletti, and Vicino (2005), the Bayesian approach given
in Juloski, Weiland, and Heemels (2005) and the mixed-integer
programming method applied in Roll et al. (2004). Although a
number of contributions have been made on the identification
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of PWARX system, this problem is not finished. Some important
issues such as sufficient excitation of all submodels of the system,
the recursive estimator and its asymptotical properties, are still
open. See Paoletti, Juloski, Ferrari-Trecate, and Vidal (2007) for a
detailed discussion.

In this paper, we will mainly consider identification of the
parameters of affine submodels of the PWARX system. In existing
literatures (see Paoletti et al., 2007, and references therein),
the identification of parameters of affine submodels usually
depends on data classification where each datum point must be
associated to the most suitable submodel. Noticing also that the
PWARX system is essentially nonlinear, the classical identification
algorithms, for example, the least squares algorithm and the
frequency domain approach, can not be applied. Motivated by the
fact that the PWA function is locally linear, in this workwe propose
a kernel function-based weighted least squares (WLS) estimator to
recursively estimate the parameters of affine submodels.

Under some mild conditions, we will prove the strong
consistency of the WLS estimates. As far as the convergence
analysis of recursive estimates is concerned, the ODE method is
probably the most widely used approach in various application
areas. See Ljung (1975, 1977) and the recent paper Brus (2007).
A restriction of the ODE method is that it a priori assumes that
the estimates are bounded, which is difficult to verify in general
case. And sometimes the stationarity of the signals is required
(Brus, 2007). To avoid imposing such kinds of conditions, in this
paperwe adopt theMarkov chainmethod in Zhao (2008) and Zhao,
Chen, and Zheng (2010) for the convergence analysis of the WLS
algorithm.

The rest of this work is organized as follows. The identification
algorithm is introduced in Section 2 while its asymptotical
properties are given in Section 3. Two numerical examples are
given in Section 4. Some concluding remarks can be found in
Section 5. Appendix contains proofs of some technical results.
Notations: Let (Ω, F , P) be the basic probability space and E(·) be
the expectation operator. Denote the Borel σ -algebra on Rp+q by
Bp+q and the Lebesgue measure on (Rp+q, Bp+q) by µp+q(·). The
total variation norm of a signed measure ν(·) is denoted by ∥ν∥var.
For a Markov chain {ϕk}k≥1, denote by Pk(A) = P{ϕk ∈ A} the
marginal distribution and by PIV(·) the invariant probability. For
real numbers a and b and a set A, denote a ∧ b = min{a, b} and
Ac the complement of A. For vectors ai ∈ Rn, i = 1, . . . ,N , define
row{ai | i = 1, . . . ,N} , [a1 · · · aN ] ∈ Rn×N and col{ai | i =

1, . . . ,N} , [aT1 · · · aTN ]
T

∈ RnN×1.

2. Kernel-based recursive estimation

The single-input single-output (SISO) PWARX system is formu-
lated as follows,

yk+1 = f (yk, . . . , yk+1−p, uk, . . . , uk+1−q) + εk+1, (1)

f (x) = θ(l)T

xT 1

T
, x ∈ Xl, l = 1, . . . , s (2)

where uk and yk are the system input and output, respectively,
εk is the system noise, f (·) is a piecewise affine (PWA) function,
{Xl}

s
l=1 is an unknown polyhedral partition of Rp+q, i.e.,

s
l=1 Xl =

Rp+q, Xm ∩ Xn = ∅, ∀m ≠ n,m, n = 1, . . . , s, and θ(l) =

[β(l)Tα(l)]T ∈ Rp+q+1 with β(l) ∈ Rp+q and α(l) ∈ R is the
unknown parameter vector corresponding to Xl.

The estimates for the parameters of the linear submodel are
given by the following weighted least squares (WLS) algorithm,

(βN , γN) = argmin
(γ ,β)

JN(β, γ ) (3)

JN(β, γ ) =

N
k=1

wk(ϕ
∗)

yk+1 − βT (ϕk − ϕ∗) − γ

2
, (4)

where ϕk = [yk · · · yk+1−puk · · · uk+1−q]
T , ϕ∗

= [y(1)
· · · y(p)

u(1)
· · · u(q)

]
T

∈ Rp+q,

wk(ϕ
∗) =

1

(2π)
p+q
2

1

bp+q
k

· exp


−

1
2

p
i=1


yk+1−i − y(i)

bk

2

−
1
2

q
j=1


uk+1−j − u(j)

bk

2


, (5)

with bk = 1/kδ for some fixed δ ∈ (0, 1/2(p + q + 1)). Assume
ϕ∗

∈ Xl for some l = 1, . . . , s. From the definition of wk(ϕ
∗), it

can be found that the kernel wk(ϕ
∗) decays to zero exponentially

as ∥ϕk − ϕ∗
∥ tends to infinity. While for those regressors close

to ϕ∗, the corresponding kernel wk(ϕ
∗) can be approximated by

wk(ϕ
∗) = O


1/bp+q

k


= O


k(p+q)δ


. So the kernel function pro-

vides a smoothed classification for the data set {ϕk, yk+1}
N
k=1 by as-

signing different weights to each datum point and only for those
regressors close to ϕ∗ the corresponding kernels take effective val-
ues. So (γN , βN) generated from (3) and (4) may serve as the esti-
mates for the parameters of the submodel to which the given point
ϕ∗ belongs and the data classification difficulty can be overcome.
This is the key idea of the paper. For the convergence analysis of
theWLS algorithm, herewe adopt theMarkov chainmethod as fol-
lows. Denoting Φ(ϕk) , [f (ϕk)yk · · · yk+2−p0uk · · · uk+2−q]

T , ξk ,

[εk0 · · · 0uk0 · · · 0]T , then the PWARX system (1) can be reformu-
lated as

ϕk+1 = Φ(ϕk) + ξk+1, (6)

which indicates that the regressor sequence {ϕk}k≥1 is a Markov
chain. Based on the stochastic stability results of Markov chains,
the strong consistency of WLS estimates can be established.

3. Properties of identification algorithms

Assume that N pairs of input–output data {ϕk, yk+1}
N
k=1 are

available and a point ϕ∗
∈ Xl is given for some l = 1, . . . , s. We

make the following assumptions.

(A0) {uk}k≥1 is selected to be an iid sequence with 0 < E(u2
k) < ∞

andwith a probability density function (pdf), denoted by fu(·),
which is positive and continuous on R.

(A1) The number of submodels s and the system orders (p, q) are
available. Further, we assume that s ≥ 2.

(A2) {εk}k≥1 is an iid sequence with E (εk) = 0, 0 < E

ε2
k


<

∞ and with a pdf denoted by fε(·), which is positive and
uniformly continuous on R; {uk} and {εk} are mutually
independent.

(A3) f (·) defined by (2) is bounded on Rp+q.

Define matrices

XN , row


1 (ϕk − ϕ∗)T
 T

| k = 1, . . . ,N

, (7)

WN , diag

wk(ϕ

∗) | k = 1, . . . ,N

, (8)

YN+1 , col {yk+1 | k = 1, . . . ,N} . (9)

Then the WLS estimate defined by (4) can be computed by the
following formula,

θN = (XNWNXT
N )+(XNWNYN+1), (10)

where A+ denotes the Moore–Penrose inversion of a matrix A. In
this paper, we can show that matrices XNWNXT

N are nonsingular
for all N large enough. Hence the Moore–Penrose inverse matrix
equals the classical inverse matrix for all N large enough. Noticing
that XNWNXT

N is nonnegative, to preclude the possible singularity
of XNWNXT

N with N being small, we modify the WLS estimates as



Download English Version:

https://daneshyari.com/en/article/697092

Download Persian Version:

https://daneshyari.com/article/697092

Daneshyari.com

https://daneshyari.com/en/article/697092
https://daneshyari.com/article/697092
https://daneshyari.com

