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a b s t r a c t

This paper addresses the problem of verifying stability of networks whose subsystems admit dissipation
inequalities of integral input-to-state stability (iISS). We focus on two ways of constructing a Lyapunov
function satisfying a dissipation inequality of a given network. Their difference from one another is
elucidated from the viewpoint of formulation, relation, fundamental limitation and capability. One is
referred to as the max-type construction resulting in a Lipschitz continuous Lyapunov function. The
other is the sum-type construction resulting in a continuously differentiable Lyapunov function. This
paper presents geometrical conditions under which the Lyapunov construction is possible for a network
comprising n ≥ 2 subsystems. Although the sum-type construction for general n > 2 has not yet been
reduced to a readily computable condition, we obtain a simple condition of iISS small gain in the case of
n = 2. It is demonstrated that the max-type construction fails to offer a Lyapunov function if the network
contains subsystems which are not input-to-state stable (ISS).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In order to verify stability of an interconnected system, the
notion of input-to-state stability (ISS) is useful for dealing with
the subsystems which do not admit a finite linear gain (Sontag,
1989). For example, the ISS small-gain theorem is available
for establishing the ISS property of interconnection of two ISS
subsystems (Jiang, Teel, & Praly, 1994; Teel, 1996). The notion of
integral input-to-state stability (iISS) has been also developed to
characterize nonlinear systems which are not finite in the sense of
ISS (Angeli, Sontag, & Wang, 2000). For the interconnection of two
subsystems, the philosophy of the ISS small-gain theoremhas been
extended to the iISS case (Ito, 2006; Ito & Jiang, 2009). On the other
hand, many practical systems such as logistic systems, biological
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systems, communication networks and power networks consist
of more than two subsystems and have complex interconnection
structures. To address such large-scale systems of ever-increasing
importance, the ISS small-gain theorem has been extended to the
case of general networks recently (Dashkovskiy, Rüffer, & Wirth,
2007; Jiang & Wang, 2008).

The ISS small-gain theorem was originally given in terms of
bounds for trajectories. Having Lyapunov functions is sometimes
advantageous in the analysis and design of nonlinear systems.
A Lyapunov formulation of the ISS small-gain theorem was
given in Jiang, Mareels, and Wang (1996) for the first time,
and extended to the general networks in Dashkovskiy, Rüffer,
and Wirth (2006, 2010) and Liu, Hill, and Jiang (2009). The
ISS Lyapunov functions constructed there are defined as the
maximumamong ISS Lyapunov functions of the subsystems,which
directly yield Lipschitz continuous Lyapunov functions of the
networks.2 In contrast, the iISS small-gain theorem developed
in Ito (2006), Ito and Jiang (2009) is proved by using the sum
of iISS Lyapunov functions of two subsystems, which directly
results in continuously differentiable Lyapunov functions. For
general networks of ISS subsystems, a problem of finding sum-
type Lyapunov functions is formulated in Dashkovskiy, Ito, and

2 Historically, the max-type and the sum-type construction incorporates the
idea of vector and scalar Lyapunov functions, respectively (Michel, 1983; Sandell,
Varaiya, Athans, & Safonov, 1978).
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Wirth (2011) although it is solved only in the linear case. In
Dashkovskiy, Ito et al. (2011), a max-type Lyapunov function
yielding a dissipative inequality of the ISS network has been derived
from the ISS subsystems defined in the dissipative form under a
technical assumption. Note that the max-type construction was
originally derived in the so-called implication form Dashkovskiy
et al. (2006, 2010), Jiang et al. (1996), and Liu et al. (2009). The
dissipation form has the advantage that it unifies the definition
of ISS and iISS systems, while the implication form is invalid for
iISS systems which are not ISS. An attempt to tackle iISS networks
was made in Rüffer, Kellett, and Weller (2010) which verifies that
a new scheme is required for establishing the stability of networks
involving non-ISS subsystems.

The purpose of this paper is to deal with subsystems
described by dissipative inequalities covering the iISS property,
and to elucidate capabilities, limitations and relations of the
two constructions of Lyapunov functions for general networks.
This paper shows that the max-type construction yields a
dissipation inequality of the general network consisting of general
n subsystems if a matrix-like small-gain condition holds without
any assumption on the interactionwith external disturbance. From
the sum-type construction, this paper also derives a sufficient
condition for the stability of the network. Although the condition
has not yet been expressed in a computationally convenient form
for general n, it is reduced to a small-gain condition in the case of
two subsystems. Moreover, this paper proves that the max-type
construction can only deal with ISS subsystems, while the sum-
type construction can handle non-ISS as well as ISS subsystems.
This paper gives geometrical insights into the capabilities and
limitations of the two constructions. In order to avoid confusion, it
is made clear here that the focus of this paper is on how to compose
a Lyapunov function for the entire network, which is independent of
another interesting issue of how to formulate interaction between
individual subsystems such as sum and maximum (Dashkovskiy,
Kosmykov, & Wirth, 2011; Dashkovskiy et al., 2010).3

We use the following notation. The symbol | · | stands for the
Euclidean norm. A continuous function ω : R+ := [0,∞) → R+

is said to be positive definite and denoted by ω ∈ P if it satisfies
ω(0) = 0 and ω(s) > 0 holds for all s > 0. A function is of
class K if it belongs to P and is strictly increasing; of class K∞

if it is of class K and is unbounded. The symbol Id denotes the
identity map. The symbols ∨ and ∧ denote logical sum and logical
product, respectively. Negation is ¬. For f , g : R+ → R+, we use
the simple notation lim f (s) = lim g(s) to describe {lim f (s) =

∞∧ lim g(s) = ∞}∨{∞ > lim f (s) = lim g(s)}. Note that the∞

case is included. In a similar manner, lim f (s) ≥ lim g(s) denotes
{(lim f (s) = ∞) ∨ (∞ > lim f (s) ≥ lim g(s))}. For vectors a, b ∈

Rn the relation a ≥ b is defined by ai ≥ bi for all i = 1, . . . , n. The
relations>,≤, < for vectors are defined in the same manner. The
negation of a ≥ b is denoted by a ≱ b and this means that there
exists an i ∈ {1, . . . , n} such that ai < bi. For a function of time t ,
a dot over its symbol stands for d/dt . A preliminary version of the
material in this paper was presented at the 48th IEEE Conference
on Decision and Control, December, 2009.

2. Problem statement

Consider a networkΣ whose state vector x(t) = [x1(t)T , x2(t)T ,
. . . , xn(t)T ]T ∈ RN for t ∈ R+ is governed by ẋ = f (x, r)

3 For example, onemaywant to usemaximization instead of the sum on the right
side of (1).

and admits the existence of a positive definite and radially un-
bounded R+-valued C1 function Vi(xi) such that the time deriva-
tive of Vi(xi(t)) satisfies

V̇i ≤ −αi(Vi(xi))+


j≠i

γij(Vj(xj))+ κi(|r|) (1)

along the trajectories xi(t) ∈ RNi for each i = 1, 2, . . . , n. The
vector r(t) ∈ RM denotes an exogenous signal. The property (1)
is usually called a dissipation inequality of a subsystem Σi. It is
assumed that αi ∈ K, γij ∈ K ∪ {0} and κi ∈ K ∪ {0} hold. This
assumption means that each subsystem Σi defined with the state
xi and the inputs xj, j ≠ i, and r is integral input-to-state stable
(iISS), and that Vi is an iISS Lyapunov function for the individual
subsystem Σi for each i = 1, 2, . . . , n. We borrow the notions
of ISS and iISS properties from Angeli et al. (2000), Sontag (1989)
and Sontag and Wang (1995). Under a stronger assumption αi ∈

K∞, the system Σi is guaranteed to be input-to-state stable (ISS),
and the function Vi is entitled to be a (dissipative) ISS Lyapunov
function. The original definition of iISS and ISS is given in terms
of trajectories, which is equivalent to the existence of C1 iISS and
ISS Lyapunov functions, respectively (Angeli et al., 2000; Sontag
& Wang, 1995). By definition, an ISS system is always iISS. The
converse does not hold.

The objective of this paper is to derive conditions under which
the network Σ in total is iISS with respect to input r and state x
through construction of an iISS Lyapunov function for the overall
network. We want to cover ISS as a special case. To this end, we
define operators A,Γ : s ∈ Rn

+
→ z ∈ Rn

+
by

z = A(s) = [α1(s1), α2(s2), . . . , αn(sn)]T ,

z = Γ (s) =


j≠1

γ1j(sj),

j≠2

γ2j(sj), . . . ,

j≠n

γn,j(sj)

T

.

The operator K : τ ∈ R+ → z ∈ Rn
+
is defined by

z = K(τ ) = [κ1(τ ), κ2(τ ), . . . , κn(τ )]T .

The following vectors are also defined:

V (x) = [V1(x1), V2(x2), . . . , Vn(xn)]T ,
V̇ = [V̇1, V̇2, . . . , V̇n]

T ,

where V̇i = dVi/dt is the time derivative along the trajectories
xi(t) ∈ RNi . Then the dissipation inequalities (1) can be compactly
written as

V̇ ≤ (−A + Γ ) ◦ V (x)+ K(|r|). (2)

Recall that the relation ≤ for vectors used in (2) is interpreted
componentwise. The goal of this paper is to find a positive definite
and radially unbounded function Vcl : RN

→ R+ satisfying the
dissipation inequality

V̇cl ≤ −αcl(Vcl(x))+ κcl(|r|) (3)

along the trajectories x(t) of the networkΣ for some αcl ∈ P and
κcl ∈ K ∪ {0}. The property (3) guarantees that the network Σ is
iISS with respect to input r and state x. Furthermore, the network
Σ is ISS if αcl ∈ K∞.

Remark 1. The function Vi satisfying (1) is an iISS Lyapunov
function even when αi ∈ P (Angeli et al., 2000). Nevertheless,
to allow for feedback loops in the network Σ , this paper assumes
αi ∈ K which is a strict subset of P . It is proved in Ito
(2010a), Ito and Jiang (2009) that a feedback interconnection of
iISS systems defined by the dissipation inequalities (1) with γij ∈

K is guaranteed to be iISS only if for each i the function αi can
be bounded from below by a class K function. The dynamics
of interconnected comparison systems also leads us to the same
observation for ‘‘bounding’’ systems (Rüffer et al., 2010).
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