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a b s t r a c t

In this paper, we investigate control strategies for a scalar, one-step delay system in discrete-time, i.e., the
state of the system is the input delayed by one time unit. In contrast with classical approaches, here the
control actionmust be amemoryless function of the output of the plant,which comprises the current state
corrupted by measurement noise. We adopt a first order state-space representation for the delay system,
where the initial state is a Gaussian random variable. In addition, we assume that the measurement
noise is drawn from a white and Gaussian process with zero mean and constant variance. Performance
evaluation is carried out via a finite-time quadratic cost that combines the second moment of the control
signal, and the second moment of the difference between the initial state and the state at the final time.
We show that if the time-horizon is one or two then the optimal control is a linear function of the plant’s
output, while for a sufficiently large horizon a control taking on only two values will outperform the
optimal affine solution. This paper complements thewell-known counterexample byHansWitsenhausen,
which showed that the solution to a linear, quadratic and Gaussian optimal control paradigm might be
nonlinear.Witsenhausen’s counterexample considered an optimization horizonwith two time-steps (two
stage control). In contrast with Witsenhausen’s work, the solution to our counterexample is linear for
one and two stages but it becomes nonlinear as the number of stages is increased. The fact that our
paradigm leads to nonlinear solutions, in the multi-stage case, could not be predicted from prior results.
In contrast to prior work, the validity of our counterexample is based on analytical proof methods. Our
proof technique rests on a simple nonlinear strategy that is useful in its own right, since it outperforms
any affine solution.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following discrete-time system:

X(k + 1) = U(k), k ≥ 0 (1)
Y (k) = X(k) + V (k), k ≥ 0 (2)

where V (k), U(k), X(k), and Y (k) take values on the reals, and
they represent the measurement noise, input, state, and output
of the plant, respectively. In addition, we assume that the initial
state X(0) is a Gaussian random variable, with zero mean and
variance σ 2

0 . The measurement noise {V (k)}∞k=0 is white, Gaussian,
zeromean andwith constant variance given byσ 2

V .We also assume
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that the noise {V (k)}∞k=0 andX(0) aremutually independent. In this
paper, we will investigate the following problem.

Problem 1. Let σ 2
0 and σ 2

V be pre-selected positive constants rep-
resenting the variance of X(0) and V (k), for all k ∈ {0, . . . ,m − 1}
and m be a given integer denoting the length of an optimization
horizon. Consider that the system described by (1)–(2) accepts a
control strategy of the following form:

U(k) = Fk(Y (k)), k ∈ {0, . . . ,m − 1} (3)

where, for each k in the set {0, . . . ,m − 1}, Fk : R → R is a
Lebesgue measurable function. Given a positive real parameter ϱ,
wewish to determine Lebesguemeasurable functions {Fk}

m−1
k=0 that

minimize the following cost:

J({Fk}
m−1
k=0 , ϱ, σ 2

0 , σ 2
V )

def
= E[(X(m) − X(0))2] + ϱ

m−2−
k=0

E[U(k)2]. (4)

In Fig. 1, we present a graphic interpretation of Problem 1. Notice
that Problem 1 can be viewed as an optimal control problem aimed
at the design of a memory element capable of storing X(0). The
memory element must be constructed using a one-step delay and
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Fig. 1. Graphical interpretation of Problem 1.

memoryless components {Fk}
m−1
k=0 , which are used in a feedback

configuration. In addition, the memoryless control has access to
noisy measurements of the delay’s state. Minimizing the cost
function defined in (4) amounts to finding the minimal energy
memoryless control that leads to the optimal recovery ofX(0) from
Y (m − 1), in a mean square sense.
Paper organization and overview of main results:

The following is the organization of this paper (introduction not
included):

• In Section 2, we derive the optimal solution to Problem 1,
subject to the constraint that the feedback maps {Fk}

m−1
k=0 are

affine.We also show that ifm is one or two then affine solutions
are optimal.

• In Section 3, we adopt a class of functions {Fk}
m−1
k=0 that take on

only two values for each step k. Given σ 2
0 and σ 2

V , we show that
there exists m for which the two valued strategy outperforms
the optimal affine control and we provide numerical examples.

• In Section 4, we discuss conclusions and open issues.

1.1. Comparison with related work

The paradigm described in Problem 1 is a linear quadratic and
Gaussian optimal control problem. We show that, for up to two
stages (m ∈ {1, 2}), an optimal solution is attained via affine
memoryless control. However, affine solutions are not optimal for
all m. In fact, for m large enough, we show that a memoryless
control strategy taking on only two values may outperform the
optimal affine memoryless controller. The fact that a memo-
ryless policy taking on only two values outperforms the best
affine control shows that, for m sufficiently large, the optimal
solution to Problem 1 is nonlinear. In fact, for m larger than
two, we do not know the optimal solution to Problem 1. This
is not surprising, since the related two stage problem suggested
by Witsenhausen (1968) remains open forty years after its pub-
lication. In Bansal and Basar (1987) and Basar (2008), the au-
thors place the Witsenhausen counterexample within a broad
class of dynamic decision problems with nonclassical information.
In Grover and Sahai (2008), a vector version of the Witsenhausen
counterexample is presented. Moreover, it was reported in Pa-
padimitriou and Tsitsiklis (1986) that the discretized version of
Witsenhausen’s counterexample is NP-complete. This fact hasmo-
tivated the numerical studies in Baglietto, Parisini, and Zoppoli
(2001), Deng and Ho (1999) and Lee, Lau, and Ho (2001).

The work in Ho and Chu (1972) and Chu (1972), considered the
case where a linear information pattern is defined by a directed
graph. Using the notion of partially nested information structure,
the authors of Chu (1972) and Ho and Chu (1972) characterize
when the optimal solution can be found, while bounds are derived
when the optimal is unknown. In Rotkowitz (2006), it is shown
that ifWitsenhausen counterexample ismodified using an induced
norm then the optimal control is linear. In Yuksel and Tatikonda
(2009), the authors show that linear sensing policies over Gaussian
channels might not be optimal in a distributed multi-sensor,
single controller scenario, for the minimization of a quadratic cost
function. This is in contrast with the corresponding single-sensor
problem, which does admit an optimal linear solution. The work
in Rotkowitz (2008) addresses one follow-up question listed in
the paper by Witsenhausen, more specifically, Rotkowitz (2008)

discusses the connections between partially nested structures, for
which linear controllers are known to be optimal, andquadratically
invariant structures, for which the optimal linear control is known
to be convex.

2. Optimal affine memoryless control

In this section, we solve Problem 1 under the constraint that the
functions {Fk}

m−1
k=0 are affine. In particular, we adopt the following

steps:

• We start this section by defining an auxiliary problem (Prob-
lem 2), in which we adopt the cost E[(X(0) − X(m))2] subject
to an upper bound constraint on

∑m−2
k=0 E[U(k)2], where X(k)

and U(k) are those defined in Problem 1;
• Proposition 3 solves Problem 2, for two stages, for the special

case where the initial noise is set to zero (V (0) = 0);
• In Lemma 6, we find the optimal solution to Problem 2, subject

to affine memoryless control strategies;
• In Proposition 7, we give the optimal solution of Problem 2, for

two stages (m = 2), and we show that the optimal memoryless
policy is affine;

• The main result of the section is given in Theorem 9, in which
the optimal cost of Problem 1 is computed under the constraint
that the functions {Fk}

m−1
k=0 are affine for arbitrarym.

Problem 2. Let σ 2
0 and σ 2

V be pre-selected positive constants rep-
resenting the variance of X(0) and V (k), for all k ∈ {0, . . . ,m − 1}
and m be a given integer denoting the length of an optimization
horizon. Consider that the system described by (1)–(2) accepts a
control strategy of the following form:

U(k) = Fk(Y (k)), k ∈ {0, . . . ,m − 1} (5)

where, for each k in the set {0, . . . ,m − 1}, Fk : R → R is a
Lebesgue measurable function. Given a positive real parameter γ ,
wewish to determine Lebesguemeasurable functions {Fk}

m−1
k=0 that

minimize the following cost:

C({Fk}
m−1
k=0 , σ 2

0 , σ 2
V )

def
= E[(X(m) − X(0))2] (6)

s.t.
m−2−
k=0

E[U(k)2] ≤ (m − 1)σ 2
V γ . (7)

Using standard Lagrangian relaxation (Boyd & Vandenberghe,
2004), there exists a positive real number ϱ, such that the optimal
solution of Problem 2, is also an optimal solution of the following
problem:

min
{Fk}

m−1
k=0

E[(X(m) − X(0))2] + ϱ

m−2−
k=0

E[U(k)2]

with X(0), X(m) and U(k) defined as in Problem 2, where ϱ

is the Lagrange multiplier associated with the constraint
∑m−2

k=0
E[U(k)2] ≤ (m − 1)σ 2

V γ . Hence, using Lagrangian relaxation we
can recover Problem 1. We will show later in Theorem 9, that,
subject to affine memoryless control and under some additional
conditions, Problems 1 and 2 share an optimal solution. We intro-
duce Problem 2 because it will aid in the solution of Problem 1,
subject to affine memoryless control.

The following proposition is an important supporting result for
this section. It provides a solution to Problem 2, for the particular
case, where m is two and the initial noise is set to zero (V (0) =

0). Our proof uses a result in Bansal and Basar (1987), where a
similar problem was analyzed. In Fig. 2, we present an alternative
interpretation of Proposition 3.
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