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a b s t r a c t

Applying the tubular neighborhood theorem,we give a simple proof of the Pontryaginmaximumprinciple
on a smooth manifold. The idea is as follows. Given a control system on a manifold M , we embed it into
some Rn and extend the control system to Rn. Then, we apply the Pontryagin maximum principle on Rn

to the extended system and project the consequence toM .
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The classic book by Pontryagin, Boltyanskii, Gamkrelidze, and
Mishchenko (1962) gives a proof of the celebrated Pontryagin
Maximum Principle (PMP) for control systems on Rn. See
also Boltyanskii (1971) and Lee and Markus (1967) for another
proof of the PMP on Rn. Sincemany control systems are defined on
manifolds (Bloch, 2003), the PMP on manifolds is as important as
that on Rn. Despite its importance, proofs of the PMP onmanifolds
are generally long and are not easily accessible. In general, there
can be three kinds of proof of the PMP on manifolds. The first
is to mutatis mutandis translate the proof in Pontryagin et al.
(1962) into the modern differential-geometric language (Barbero-
Linan and Munoz-Lecanda (2009) and Agrachev and Sachkov
(2004)). Although this approach gives a good geometric insight
into the principle, it has the drawback that the proof becomes
long due to the repetition of many arguments in the original proof
in Pontryagin et al. (1962). The second kind of proof is to adapt
the proof in Pontryagin et al. (1962) to manifolds by patching up a
finite number of local charts covering an optimal trajectory; see
the remark on p. 357 in Jurdjevic (1997). Similarly, a drawback
of the second approach is that the proof becomes long, involving
coordinate transformations and repeating the proof in Pontryagin
et al. (1962). Furthermore, it requires some knowledge of the
proof of the PMP on Rn. The third kind of proof is the one that
we present in this paper by combining the Whitney embedding
theorem and the PMP on Rn. This approach uses the PMP on Rn as
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a lemma to prove the PMP on manifolds, avoiding repeating the
arguments in the original proof in Pontryagin et al. (1962). Our
proof is short, not requiring knowledge of the proof of the PMP
on Rn.

The idea in our proof is simple. Given a control system on
a manifold M , we embed M into some Rn and construct a
control system on Rn whose restriction to M agrees with the
original system such that M becomes an invariant manifold of
the extended control system on Rn. We then reformulate the
original optimal control problemwith a point-to-point transfer on
M into an equivalent optimal control problem with a point-to-
submanifold transfer in Rn where the submanifold is transversal
to M . We apply the PMP on Rn to the equivalent problem,
and then project (or, restrict) the result to M , to prove the
PMP on M . Our proof is pedagogically meaningful, illustrating a
nice application of the tubular neighborhood theorem to control
theory. For the sake of simplicity, we consider only the case of
free terminal time since the fixed terminal time case follows
similarly.

2. Main results

Let us first introduce the notation thatwill be used in the paper;
refer to Chapters 1 and 2 of Abraham andMarsden (1978) for more
on notation in differential manifolds theory. For a manifoldM , TM
and T ∗M denote the tangent bundle and the cotangent bundle of
M , respectively. The canonical symplectic form Ω on a cotangent
bundle T ∗M is a two-form that is expressed as Ω = dxi ∧ dpi in
any local bundle charts (xi, pj) on T ∗M . The canonical symplectic
form Ω induces a bundle map Ω♯

: T ∗M → TM as follows:
Ω♯df =

∂ f
∂pi

∂

∂xi
−

∂ f
∂xj

∂
∂pj

for each smooth function f : T ∗M → R.
Let H : M × L → R be a smooth function on a product manifold
M × L, and (x, y) coordinates for M × L. When we write H(x; y)
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instead of H(x, y), we interpret the variable y as parameter. Hence,
dH(·; y) = dH(x; y) =

∂H
∂xi

(x; y)dxi is understood as a one-form
on X parameterized by y. Let X : M × L → TM be a map such
that X(x; y) ∈ TxM for all (x, y) ∈ M × L. In this case we interpret
X(x; y) as a vector field on M parameterized by y. However, we
do not strictly follow this rule when there is no possibility of
confusion. For an alternative way of treating dH(x; y) and X(x; y),
see Definition 2.1 in Barbero-Linan and Munoz-Lecanda (2009).

2.1. Review of the Pontryagin maximum principle on Rn

Consider a control system on Rn:

ẋ = f (x, u), x ∈ Rn, u ∈ W (1)

where W is a subset of some Euclidean space. We want to find a
control u(t), taking values in W of course, for the system (1) such
that∫ t1

t0
f 0(x, u)dt is minimized (2)

with respect to piecewise continuous1 u and to t1, and

x(t0) = x0, x(t1) = x1 (3)

where the terminal time t1 is free. For convenience,we assume that
f : Rn

× W → Rn and f 0 : Rn
× W → R are smooth.

Theorem 1 (Theorem 1 on p.19 Pontryagin et al. (1962)). Suppose
that u(t), t0 ≤ t ≤ t1, is a piecewise continuous optimal control
and x(t) is the corresponding optimal trajectory for (1) – (3). Then,
there exists a nowhere-vanishing continuous curve (p0(t), p(t)) ∈

R × Rn
= R × T ∗

x(t)R
n such that:

1. The trajectory (x(t), p(t)) satisfies
ẋi =

∂H
∂pi

(x, p; p0, u(t)),

ṗi = −
∂H
∂xi

(x, p; p0, u(t)),
i = 1, . . . , n, (4)

i.e., it is the flow of the Hamiltonian vector field

XH(x, p; p0, u(t)) = Ω♯dH(x, p; p0, u(t)) (5)

whereΩ is the canonical symplectic form on T ∗Rn
= Rn

×Rn and
the Hamiltonian H : Rn

× Rn
× R × W → R is given by

H(x, p; p0, u) = p0f 0(x, u) + ⟨p, f (x, u)⟩.

2. p0 ≤ 0 and is constant in t.
3. u(t) = argmaxv∈W H(x(t), p(t); p0, v) for every t ∈ [t0, t1].
4. H(x(t), p(t); p0, u(t)) = 0 for every t ∈ [t0, t1].

When the two endpoints x(t0) and x(t1) are variable on some
manifolds in Rn, we replace the fixed endpoint conditions in (3)
with the following conditions:

x(t0) ∈ S0, x(t1) ∈ S1 (6)

where S0 and S1 are smooth submanifolds of Rn. The terminal time
t1 is still assumed to be free. In this case, the PMP on Rn is modified
as follows:

1 In this paper we follow the definition of a piecewise continuous function given
on p. 10 in Pontryagin et al. (1962).

Theorem 2 (Theorem 3 on p. 50 Pontryagin et al. (1962)). Let
u(t), t0 ≤ t ≤ t1, be a piecewise continuous optimal2 control and
x(t) the corresponding trajectory for (1), (2) and (6). Then, all of the
conclusions in Theorem 1 hold, and additionally the transversality
conditions

⟨p(t0), Tx(t0)S0⟩ = 0, ⟨p(t1), Tx(t1)S1⟩ = 0

are satisfied, i.e., ⟨p(t0), v⟩ = 0 for all v ∈ Tx(t0)S0 and ⟨p(t1), v⟩ = 0
for all v ∈ Tx(t1)S1.

2.2. The Pontryagin maximum principle on manifolds

We consider the optimal control problem of finding a control
u(t) for the control system on an n-dimensional manifoldM

ẋ = f (x, u), x ∈ M, u ∈ W (7)

such that∫ t1

t0
f 0(x, u)dt is minimized (8)

with respect to piecewise continuous u and to t1, and

x(t0) = x0, x(t1) = x1 (9)

where the terminal time t1 is free. For convenience,we assume that
W is a subset of a Euclidean space and that f and f 0 are smooth.

Theorem 3. Suppose that u(t), t0 ≤ t ≤ t1 is a piecewise
continuous optimal control and x(t) is the corresponding trajectory
for (7)–(9). Then, there exists a nowhere-vanishing continuous curve
(λ0(t), λ(t)) ∈ R × T ∗

x(t)M such that:

1. The trajectory (x(t), λ(t)) is the flow of

XH(x, λ; λ0, u(t)) = Ω♯dH(x, λ; λ0, u(t)) (10)

where Ω is the canonical symplectic form on T ∗M and

H(x, λ; λ0, u) = λ0f 0(x, u) + ⟨λ, f (x, u)⟩. (11)

2. λ0 ≤ 0 and is constant in t.
3. u(t) = argmaxv∈W H(x(t), λ(t); λ0, v) for every t ∈ [t0, t1].
4. H(x(t), λ(t); λ0, u(t)) = 0 for every t ∈ [t0, t1].

Proof. By the Whitney Embedding Theorem (Lee, 2002), we may
assume that M is an embedded submanifold and a closed subset
of RN for some N ∈ N where N > n. Then, by the tubular
neighborhood theorem, there is an open neighborhood V of M in
RN and a smooth retraction πV of V onto M such that for each
x ∈ M , π−1

V (x) is a submanifold of dimension (N − n) in V ,

π−1
V (x) ∩ M = {x}, and Tx(π−1

V (x)) ⊕ TxM = RN .

Refer to Lee (2002) for a construction of V and πV . Since M is a
closed subset of V , by Proposition 2.26 in Lee (2002) there is a
smooth function ρ : RN

→ [0, 1] such that the closure of the
support of the function ρ is contained in V and ρ(z) = 1 for every
z ∈ M . Define a control vector field F : RN

× W → RN by

F(z, u) =


ρ(z)f (πV (z), u) if (z, u) ∈ V × W ,
0 otherwise. (12)

Note that the restriction of F toM agrees with f , andM is invariant
under the flow of F . Define a function F 0

: RN
× W → R by

F 0(z, u) =


ρ(z)f 0(πV (z), u) if (z, u) ∈ V × W ,
0 otherwise,

so as to extend the integrand f 0 in (8) to RN
× W .

2 The optimization is again with respect to piecewise continuous u and to t1 .
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