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a b s t r a c t

Power-shaping control is a recent approach for the control of nonlinear systems based on the physics of
the dynamical system. It rests on the formulation of the dynamics in the Brayton–Moser form. One of the
main obstacles for using the power-shaping approach is to write the dynamics in the required form, since
a partial differential equation system submitted to sign constraints has to be solved. This work comes
within the framework of control design approaches that could possibly generate a closer link between
the notions of energy that are specific to reaction systems as derived from thermodynamics concepts, and
the dynamic system stability theory. The objective of this paper is to address the design of power-shaping
control to reaction systems, and more particularly the step of solving the partial differential equation
system. In order to illustrate the approach, we have selected the classical yet complex continuous stirred
tank reactor (CSTR) as a case study. We show how using the power-shaping approach leads to a global
Lyapunov function for the unforced exothermic CSTR. This Lyapunov function is then reshaped by means
of a controller in order to stabilize the process at a desired temperature.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear dynamical systems can have a complex behaviour
and be difficult to analyze and to control. Stability analysis of
nonlinear systems requires the use of abstract mathematical
tools such as the two Lyapunov methods or the passivity theory.
Over recent years, several works have combined those abstract
concepts with the underlying physical phenomena giving rise
to the dynamical behaviour of the system. These works include,
for instance, the study of port-Hamiltonian systems (Dalsmo &
van der Schaft, 1998), energy-balancing passivity based control
(PBC) (Jeltsema, Ortega, & Scherpen, 2004; Ortega, van der Schaft,
Mareels, & Maschke, 2001) or the introduction of the contact
formalism for expressing the dynamics of systems in which
irreversible phenomena arise (Eberard, Maschke, & van der Schaft,
2007; Favache, Maschke, & Dochain, 2007).
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Power-shaping control (Ortega, Jeltsema, & Scherpen, 2003)
has been developed in recent years as an extension of energy-
balancing PBC (Jeltsema et al., 2004; Ortega et al., 2001) and has
been applied to electro-mechanical systems (Maschke, Ortega,
& van der Schaft, 2000; Ortega, van der Schaft, Maschke, &
Escobar, 2002) and to thermodynamic systems (Alonso, Ydstie, &
Banga, 2002; Otero-Muras, Szederkényi, Alonso, & Hangos, 2006).
However this control approach cannot be applied to systems
with pervasive dissipation. To overcome this difficulty power-
shaping control has been introduced, firstly for the stabilization
of nonlinear RLC circuits (Ortega et al., 2003). Contrary to energy-
balancing PBC, the storage function used for the control is related
to the power and not to the energy. Power-shaping control has
subsequently been applied to the control of mechanical and
electromechanical systems (García-Canseco, Jeltsema, Ortega, &
Scherpen, 2010).

The central objective of thiswork is to comewith control design
approaches that could possibly generate a closer link between the
notions of energy that are specific to reaction systems as derived
from thermodynamics concepts, and the dynamic system stability
theory. Thermodynamic systems, and among them chemical
reaction systems, are usually nonlinear dynamical systems. The
non-isothermal continuous stirred tank reactor (CSTR) is clearly
the most representative example of such a system in dynamical
system theory. In particular its dynamical behaviour exhibits
complex features, such as multiple equilibrium points. Up to now
no precise physical interpretation of the complex behaviour of
the non-isothermal reactor has been found (Favache & Dochain,
2009c). Hence the power-shaping approach seems to offer a
promising way to achieving this objective.
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Model-predictive control (MPC) has been widely applied for
process control in recent decades. The MPC objective function
serves naturally as a closed-loop Lyapunov function (Mayne,
Rawlings, Rao, & Scokaert, 2000). However, it is not linked to
physical phenomena and it does not give information about the
unforced system. As we shall see in our study case, the potential
function of the Brayton–Moser formulation is a Lyapunov function
candidate for the unforced system. This potential function has been
given a physical interpretation in the case of electro-mechanical
systems.

This paper is concerned with the design of power-shaping
control for reaction systems. The main obstacle for using the
power-shaping approach is to write the dynamics in the required
form because it needs the solution of a partial differential equation
(PDE) system submitted to sign constraints. We shall propose an
approach for circumventing this difficulty and illustrate it on our
particular study case. First we shall briefly introduce the concepts
of the power-shaping approach in Section 2. Then in Section 3 we
present the dynamics of our study case. We shall then present
our approach for obtaining the Brayton–Moser form of the CSTR,
which consists in finding a solution to the Brayton–Moser partial
differential equation system, starting from the mathematical
dynamical model (Section 4). The obtained Brayton–Moser form
shall then be used to design a control system for the CSTR using
the power-shaping approach.

2. Power-shaping control1

2.1. The Brayton–Moser formulation

Let us consider a dynamic systemof dimensionN withm inputs.
The state of the system is given by the vector x ∈ RN and the input
is given by vector uc ∈ Rm. The power-shaping control theory is
based on the Brayton–Moser formulation of the system dynamics
(Brayton & Moser, 1964). In this formulation the system dynamics
are of following form:

Q (x)
dx
dt

= ∇P(x) + G(x)uc (1)

where Q (x) : RN
→ RN

× RN is a non-singular square matrix,
P(x) : RN

→ R is a scalar function of the state and G(x) : RN
→

RN
× Rm. Additionally the symmetric part of the matrix Q (x) is

negative semi-definite, i.e.:

Q (x) + Q t(x) ≼ 0. (2)

The function P(x) is called the potential function. In electrical and
mechanical systems, it has the units of power and is related to
the dissipated power in the system. In the first one it is related to
the so-called content and co-content of the resistances (Jeltsema &
Scherpen, 2007; Ortega et al., 2003); in the latter it is related to the
Rayleigh dissipation function (Jeltsema &, 2003).

Let us now assume the system dynamics is given by the
following relation:

dx
dt

= f (x) + g(x)uc (3)

where f (x) : RN
→ RN and g(x) : RN

→ RN
× Rm. The system (3)

can be written in the form (1) if there exists a non-singular matrix
Q (x) fulfilling (2) and that solves the following PDE system2:

∇(Q (x)f (x)) = ∇
t(Q (x)f (x)). (4)

1 The statements in this section are given without any proof. For more details,
the reader can refer to García-Canseco et al. (2010), Jeltsema and Scherpen (2007),
Ortega et al. (2003) and Scherpen (2003).
2 This condition is equivalent to the existence of P(x).

P(x) is then the solution of the following PDE system:

∇P(x) = Q (x)f (x) (5)

and the function G(x) is given by G(x) = Q (x)g(x).

2.2. Power-shaping control

Let us assume that the system dynamics can be expressed by
using the Brayton–Moser equations presented before. The desired
equilibrium state is denoted by x∗. The principle of power-shaping
control is to choose the input uc(x) such that in closed loop the
system dynamics are given by the following relation:

Q (x)
dx
dt

= ∇Pd(x) (6)

where Pd(x) : RN
→ R is the re-shaped potential function. The

desired equilibrium x∗ must be a local minimum of the potential
function Pd(x) in order to be locally asymptotically stable. The
function Pd(x) can be used as a Lyapunov function for the closed-
loop system.

The function Pd(x) cannot be chosen arbitrarily since the
following relation must be fulfilled:

g⊥(x)Q−1(x)∇Pa(x) = 0 (7)

where Pa(x) = Pd(x) − P(x) and g⊥(x) is a full-rank left
annihilator of g(x).3 Under these conditions, the control input uc(x)
that re-shapes P(x) into Pd(x) is the following one:

uc(x) = (g t(x)Q t(x)Q (x)g(x))−1g t(x)Q t(x)∇Pa(x). (8)

Remark 1. One may note that the above proposed control law is
not defined if g t(x)Q t(x)Q (x)g(x) = 0. Due to the non-singularity
of thematrixQ (x), this is the case if and only if g(x) = 0. Hence this
implies that whatever the value of uc(x) it does not influence the
state dynamics (3). One can therefore choose any value for uc(x).

3. The CSTR case study

Contrary to previous work which focused mostly on electro-
mechanical systems, we have chosen to illustrate the power-
shaping approach on an example from chemical engineering,
namely the non-isothermal CSTR. This study case is a benchmark
example both in chemical engineering and in dynamical system
theory due to its highly nonlinear dynamics. In this section
we shall introduce our dynamical model. Unlike the model
version commonly used in control theory, it is built directly from
thermodynamic considerations, and is the most exact one from a
thermodynamic point of view. However, in some cases, it shall be
necessary to turn to a simplified version of it, which corresponds
to the more usual CSTR model used in system theory.

Let us consider a liquid-phase CSTR with constant volume V
containing Nc species and in which Nr reactions take place. The
reactor is cooled/heated by a surrounding jacket. As has been
shown in Favache and Dochain (2009c) the dynamics of such a
system are given by the following relations:

dni

dt
=

F
V

(C in
i V − ni) +

Nr−
l=1

Γilrl(T , n) (9a)

dU
dt

=
F
V

(hinV − H) + Q̇ (9b)

3 i.e. g⊥(x) : RN
→ RN−m

× RN such that g⊥(x)g(x) = 0 with rank(g⊥(x)) =

N − m.
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