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a b s t r a c t

We present a novel ultimate bound and invariant set computation method for continuous-time switched
linear systems with disturbances and arbitrary switching. The proposed method relies on the existence
of a transformation that takes all matrices of the switched linear system into a convenient form
satisfying certain properties. The method provides ultimate bounds and invariant sets in the form of
polyhedral and/or mixed ellipsoidal/polyhedral sets, is completely systematic once the aforementioned
transformation is obtained, and provides a new sufficient condition for practical stability. We show
that the transformation required by our method can easily be found in the well-known case where
the subsystem matrices generate a solvable Lie algebra, and we provide an algorithm to seek such
transformation in the general case. An example comparing the bounds obtained by the proposed method
with those obtained from a common quadratic Lyapunov function computed via linearmatrix inequalities
shows a clear advantage of the proposed method in some cases.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems are a special type of dynamic systems that
combine a finite number of subsystems by means of a switching
rule (Liberzon, 2003; Lin & Antsaklis, 2009). Switched systems
constitute a convenient description for many systems of practical
importance, including many industrial processes, aircraft control,
control of mechanical systems in general, and power systems.
The stability and stabilizability of switched systems is an area
where considerable research effort has been spent in recent
years (Decarlo, Branicky, Pettersson, & Lennartson, 2000; Liberzon
& Morse, 1999; Lin & Antsaklis, 2009; Shorten, Wirth, Mason,
Wulff, & King, 2007). Different stability problems for switched
systems arise depending on whether stability should hold for
every admissible switching signal (arbitrary switching), for every
switching signal within some class (constrained switching) or for
a specific switching signal (switching stabilization). This paper
focuses on the arbitrary switching case.
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the direction of Editor Roberto Tempo.
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In general, most attention has been devoted to analysing or
ensuring the asymptotic stability of an equilibrium point for the
switched system (Decarlo et al., 2000; Liberzon & Morse, 1999;
Lin & Antsaklis, 2009; Shorten et al., 2007). However, there exist
numerous reasons why asymptotic stability may be prevented
in a realistic setting. One such reason is that switching may be
employed to drive the state of the switched system close to a
point that is not an equilibrium point of all subsystems (Xu, Zhai,
& He, 2008). Another reason is that nonvanishing perturbations
(also named persistent disturbances) may act on the system
(Khalil, 2002, Chapter 9).When asymptotic stability is not possible,
ensuring some type of practical stability such as the ultimate
boundedness of the state trajectories becomes important.

Some results have been reported on the practical stability
of switched systems. In Su, Abdelwahed, and Neema (2005), a
switched discrete-time system is considered where switching is
state-dependent and the problem is that of finding controls that
steer the state from a set of initial states to a set of ‘‘safe’’ states.
Zhang, Chen, Sun, Mastorakis, and Alexsandrov (2008) and Zhang,
Lu, Chen, and Mastorakis (2008) address control design to ensure
uniform ultimate boundedness for switched linear systems with
parametric uncertainties under arbitrary switching by means of a
common Lyapunov function approach. In Zhang and Zhao (2002),
the authors address the design of both the control and switching
strategy to achieve uniform ultimate boundedness of the system
state. Most existing ultimate bound computation methods either
make use of level sets of a Lyapunov function or employ some
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norm of the system state to compute the ultimate bound set. For
switched linear systems, a quadratic Lyapunov function common
to all subsystems can be computed via linear matrix inequalities
(LMIs) in case it exists (see, for example, Section 4.3 of Shorten et al.
(2007) and the references therein).

In this paper, we address the computation of ultimate bounds
and invariant sets for switched continuous-time linear systems.
We derive a novel computation method that is based on
componentwise analysis and extends previous results presented
by the authors in Haimovich, Kofman, and Seron (2008) and
Kofman, Haimovich, and Seron (2007). The proposed method
provides a new sufficient condition for practical stability and relies
on the existence of a transformation that takes all matrices of the
switched linear system into a form satisfying certain properties.
These properties relate to the concept of Metzler matrices and an
associated matrix operation (see (1) in the Notation subsection).
The use of these new tools and comparison-type results based
on these tools distinguish the present paper from our previous
results for non-switched continuous-time systems (Haimovich
et al., 2008; Kofman et al., 2007) and, thus, constitute one of
this paper’s novel aspects. We show that the transformation
required by the proposed method can be found in the well-
known case where the subsystem matrices of the switched linear
system generate a solvable Lie algebra. More importantly, another
contribution of the present paper is to provide an algorithm to seek
the desired transformation that is not restricted to the solvable Lie
algebra case. Note that obtaining the required transformation in
the switched-linear case is a much more difficult task than in the
non-switched case treated in Haimovich et al. (2008) and Kofman
et al. (2007), where the transformation was simply a change of
coordinates to the Jordan canonical form.

Advantages of the proposed method include its complete
systematicity and that it requires neither the computation of a
Lyapunov function nor the use of a norm for the system state.
An interesting feature of the method is that the ultimate bounds
obtained are polyhedral if the required transformation is real, and
of a mixed polyhedral/ellipsoidal form if the transformation is
complex. To illustrate the results, we provide an example where
the matrices of the switched linear system do not generate a
solvable Lie algebra. We show that the algorithm is able to find
the transformation required by our method, which yields ultimate
bounds that are tighter than those obtained bymeans of a common
quadratic Lyapunov function computed via LMIs. A preliminary
conference version of parts of the results presented here, as well
as parallel results for discrete-time switched linear systems, was
published in Haimovich and Seron (2009).

The componentwise ultimate-bound computation method of
Haimovich et al. (2008) and Kofman et al. (2007) has been
successfully applied to the analysis of sampled-data systems with
quantisation (Haimovich, Kofman, & Seron, 2007) and to the
development of new controller design methods (Kofman, Seron, &
Haimovich, 2008). Moreover, a novel application in fault tolerant
control systems has been recently reported in, e.g., Olaru, De Doná,
and Seron (2008), Seron, Zhuo, De Doná, and Martínez (2008) and
Yetendje, Seron, De Doná, and Martínez (2010). In these papers,
the method of Kofman et al. (2007) has been employed to obtain
invariant sets where the system behaviour under ‘‘healthy’’ and
‘‘faulty’’ operation can be confined; fault tolerance can be achieved
whenever those sets are ‘‘separated’’ in some sense. Thus, the
results presented in the current paper have relevance in fault
tolerant control systems and we envisage their application in the
analysis and design of improved strategies with fault tolerance
guarantees.

Notation. R, R+, N0 and C denote the reals, nonnegative reals,
nonnegative integers and complex numbers, respectively, and j the
imaginary unit (j2 = −1). If x(t) is a vector-valued function, then

lim supt→∞ x(t) denotes the vector obtained by taking lim supt→∞
of each component of x(t), and similarly for ‘max’. |M|, Re(M) and
Im(M) denote the elementwisemagnitude, real part, and imaginary
part, respectively, of a matrix or vector M . The (i, k)-th entry of
M is denoted Mi,k and its k-th column (M):,k. If X, Y ∈ Rn×m, the
expression ‘X ≼ Y ’ denotes the set of componentwise inequalities
Xi,k ≤ Yi,k, i = 1, . . . , n, k = 1, . . . ,m, and similarly for X ≽ Y .

GivenmatricesMℓ1 ,Mℓ2 , . . . ,Mℓn , the notation
∏r=ℓ1

r=ℓn
Mr


denotes

the product Mℓ1Mℓ2 . . .Mℓn . Given a matrix M ∈ Cn×n, ρ(M)
denotes its spectral radius, that is, the maximum magnitude of its
eigenvalues. A matrix M ∈ Rn×n is Metzler if Mi,k ≥ 0 for all i ≠ k.
M is Metzler if and only if eMt

≽ 0 for all t ≥ 0. Given an arbitrary
matrix N ∈ Cn×n, we define M(N) ∈ Rn×n as the matrix whose
entries satisfy

[M(N)]i,k =


Re{Ni,k} if i = k,
|Ni,k| if i ≠ k. (1)

Note that M(N) is Metzler for every N ∈ Cn×n.

2. Main results

Consider the continuous-time switched system
ẋ(t) = Aσ(t)x(t)+ Eσ(t)w(t), (2)
where x(t) ∈ Rn is the system state, w(t) ∈ Rp is a perturbation,
and
σ : R+ → {1, 2, . . . ,n} (3)
is the piecewise constant switching function, assumed to have a
finite number of discontinuities in every bounded interval. The
evolution of the perturbation w is unknown but assumed to have
a componentwise bound
|w(t)| ≼ w, for all t ≥ 0, (4)
where w ∈ Rp

+ is a known constant vector.
Theorem 1 derives transient and ultimate bounds on the

switched continuous-time system state that are valid for any
realization of the switching function σ and, in addition, can
take the componentwise form of the perturbation bound (4) into
account. The proof of Theorem 1 is a minor modification of that of
Theorem 2 in Haimovich and Seron (2009) and is omitted for the
sake of conciseness.

Theorem 1. Consider the switched system (2) with switching
function (3) and componentwise perturbation bound (4). Let V ∈
Cn×n be invertible and define

Λi , V−1AiV , Λ , max
i=1,...,n

M(Λi), (5)

z , max
i=1,2,...,n

[
max

w:|w|≼w
|V−1Eiw|

]
(6)

where M(·) is the operation defined in (1). Suppose that Λ is Hurwitz
and define

φ , max{|V−1x(0)|,−Λ−1z}, and η , φ +Λ−1z. (7)

Then, the states of system (2)–(4) are bounded as

|V−1x(t)| ≼ −Λ−1z+ eΛtη, (8)

for all t ≥ 0, and ultimately bounded as

lim sup
t→∞

|V−1x(t)| ≼ −Λ−1z. (9)

We next present two corollaries which provide, respectively,
componentwise bounds and an invariant set for the states of the
linear switched system (2)–(4).

Corollary 2. Under the conditions of Theorem 1, the states of the
linear switched continuous-time system (2)–(4) are componentwise
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