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a b s t r a c t

In this paper, the fixed point iteration and Newton’s methods for iteratively solving nonlinear equations
are studied in the control theoretical framework. This work is motivated by the ever increasing demands
for integrating iterative solutions of nonlinear functions into embedded control systems. The use of the
well-established control theoreticalmethods for our application purpose is inspired by the recent control-
theoretical study on numerical analysis. Our study consists of two parts. In the first part, the existing fixed
point iteration and Newton’s methods are analysed using the stability theory for the sector-bounded
Lure’s systems. The second part is devoted to the modified iteration methods and the integration of
sensor signals into the iterative computations. The major results achieved in our study are, besides some
academic examples, applied to the iterative computation of the air path model embedded in the engine
control systems.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative computation is one of the standard techniques for
solving nonlinear equations (Quarteroni, Sacco, & Saleri, 2000;
Stoer & Bulirsch, 2002). It is a powerful mathematical tool widely
used in engineering applications (Eich-Soellner & Führer, 1998;
Hoffmann, Marx, & Vogt, 2005). Thanks to the rapid development
of microprocessor technology, more and more iterative solutions
of nonlinear equations are implemented on electrical control
units (ECUs) in real-time embedded systems. For instance, for
the real-time control and on-board-diagnosis (OBD) of an internal
combustion engine numerous iterative computation blocks are
integrated into the ECU (Kiencke & Nielsen, 2005).

Nonlinear equations like

x = ϕ(x) and f (x) = 0 (1)
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are most typical forms met in engineering applications (Eich-
Soellner & Führer, 1998; Hoffmann et al., 2005). The so-called fixed
point iteration described by

x(k + 1) = ϕ(x(k))

and Newton’s methods with the general iterative form

x(k + 1) = x(k)− Ψ (x(k))f (x(k))

are standard algorithms for solving (1) iteratively, where k stands
for the iterative number and Ψ (x(k)) is some matrix (Quarteroni
et al., 2000; Stoer & Bulirsch, 2002). Under certain conditions, the
iteration will converge to the solution of the equations x∗, i.e.

lim
k→∞

x(k) = x∗, x∗
= ϕ(x∗) or f (x∗) = 0.

For the real-time applications in embedded control systems, the
nonlinear equations in (1) build typically sub-models embedded in
a complex functional block and thus are often a function of system
inputs and parameters (see also the example in Section 5). In this
context, the nonlinear equations in (1) can be extended to

x = ϕ(x, p) and f (x, p) = 0 (2)

with p being a vector representing these (time-varying) system
inputs and parameters. The iterative computation will then be
triggered by each update of p. For applications in embedded
control systems, such computation often demands for high real-
time ability. Although ECUs of the new generation are becoming
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more powerful, the low cost requirement on the one hand and ever
increasing demands for the high system performance on the other
hand call for more attention to the real-time implementation of
iterative algorithms.

Our study presented in this paper is mainly motivated by
the real-time implementation of control and OBD algorithms on
the ECU for the internal combustion engine control (Weinhold,
2007). In this industrial application, we have been confronted
with the following two problems: (a) the convergence rate of
the existing iterative solutions for some nonlinear equations does
not satisfy the real-time requirement (b) the quantisation errors
due to the use of look-up tables instead of analytical functions
may considerably affect the computation performance. As a result,
poor control performance and, in the worst case, instability can be
observed. As investigating solutions for these problems, we notice
the recent efforts on applying the modern control theoretical
methods to numerical analysis (Bhaya & Kaszkurewicz, 2006,
2007; Kashima & Yamamoto, 2007; Schaerer & Kaszkurewicz,
2001; Söderlind, 2002). In particular, encouraged by the result
on the Newton’s method reported in Kashima and Yamamoto
(2007), we focus our study on (a) the convergence conditions
of the fixed point iteration and Newton’s methods for nonlinear
functions satisfying the so-called sector conditions (Khalil, 2002)
(b) the robustness issue with respect to computation errors
e.g. caused by the quantisation. In this study, vector-valued
nonlinear equations are considered, and the well-established
nonlinear control theory (Khalil, 2002) and the LMI (linear matrix
inequality) technique (Boyd, Ghaoui, & Feron, 1994) are applied as
the main analysis and design tool. This effort allows us to express
the convergence conditions in terms of some LMIs, which can then
be checked using some standard software.

Driven by the demands for high system performance and
reliability, a trend can be observed in the area of embedded control
systems that the number of the integrated sensors is continuously
increasing. The intuitive idea of our further study on solving
nonlinear equations is to integrate those sensor signals, which are
available in the embedded system, into the iterative computation.
This work has been strongly motivated by the moderate and, in
some cases, poor performance delivered by the standard iterative
methods as they were applied in the engine control and OBD
algorithms running on the ECU. It is reasonable to expect that the
additional information provided by the sensors will improve the
convergence rate and enhance the robustness. For our purpose,
an observer-like iterative method is proposed, which modifies the
existing methods and allows us to integrate the available sensor
signals so that both the convergence rate and robustness are
improved. From the control-theoretical viewpoint, this work is a
combination of our study on the existing iterative solutions and
the well-established observer design technique.

By testing our new approach to the practical real-time
implementation problems, we notice that the sensor noises
may have a strong influence on the computation performance.
Considering that e.g. in automotive systems the sensors embedded
in the control loops and in OBD are often low-cost products, the
last topic in our study is dedicated to the robustness analysis with
respect to the measurement noises.

The paper is organised as follows. In Section 2, the needed
preliminaries in numerical analysis and stability theory are briefly
presented, based on which the main problems to be addressed
in this paper are formulated. Section 3 is devoted to the control-
theoretical study on the existing fixed point iterative solution and
Newton’smethodswith a focus on the convergence and robustness
issues. In Section 4, we shall first propose a unified approach for
modifying the existing iterative algorithms and integrating sensor
signals aiming at improving the convergence rate. It is followed
by an analysis of the influence of the measurement noises on

the computation performance. The last part in this section deals
with the optimisation of the iterative schemes with respect to the
convergence rate and robustness. To illustrate the major results,
some (academic) examples are included in each section, and an
application example from the real-time implementation of the air
path model on the ECU is presented in Section 5.
Notation. The notation adopted throughout this paper is fairly
standard. Rn denotes the n-dimensional Euclidean space and
Rn×m the set of all n×m real matrices. The superscript ‘‘T ’’ stands
for the transpose of a matrix. ‘‘I ’’ and ‘‘0’’ denote the identity and
zero matrix with appropriate dimension, respectively. ‘‘P > 0 (≥
0)’’ means matrix P is positive definite (semi-definite). σ̄ (·), σ (·)
denote the maximum and minimum singular value of a matrix
respectively. ∥·∥ stands for the Euclidean norm. For vector x ∈ Rn,
∥x∥ =

√
xT x. We use E(·) to denote the expectation of a statistical

or stochastic variable.

2. Preliminaries, basic ideas and problem formulation

2.1. Fixed point iteration and Newton’s methods

Let the function ϕ : Rn
→ Rn have a fixed point x∗

: ϕ(x∗) =

x∗
∈ Rn. The fixed point iteration algorithm is given e.g. by Stoer

and Bulirsch (2002)

x(k + 1) = ϕ(x(k)) ∈ Rn. (3)

The following definition and theorem are standard results in
numerical analysis (Quarteroni et al., 2000; Stoer & Bulirsch, 2002).

Definition 1. ϕ : D ⊆ Rn
→ Rn is called contractive on a set

Do ⊂ D if there exists a constant α < 1 such that for all x, y ∈ Do

∥ϕ(x)− ϕ(y)∥ ≤ α∥x − y∥. (4)

Theorem 1 (Eich-Soellner and Führer (1998), Banach’s Fixed Point
Theorem). Let ϕ : D ⊆ Rn

→ Rn be contractive in a closed set Do ⊂

D and suppose ϕ (Do) ⊂ Do. Then ϕ has a unique fixed point x∗
∈ Do.

Moreover, for any x(0) = x0 ∈ Do, the iteration (3) converges to x∗.
The distance to the solution is bounded by

∥x∗
− x(k)∥ ≤

αk

1 − α
∥x(1)− x(0)∥. (5)

It is worthmentioning that under the same conditions given in the
above theorem it is easy to prove that

∥x∗
− x(k)∥ ≤ αk

∥x∗
− x(0)∥. (6)

Let the function f : Rn
→ Rn have a unique solution x∗

∈ Rn
:

f (x∗) = 0. The standard Newton’smethod is an iterative algorithm
described by

x(k + 1) = x(k)− (Df (x(k)))−1f (x(k)) (7)

with Df (x(k)) ∈ Rn×n as the Jacobian matrix of f (x(k)). The
following theorem describes the major properties of Newton’s
method (Stoer & Bulirsch, 2002).

Theorem 2. Given f : D ⊆ Rn
→ Rn and the convex set Do ⊆ D,

let f be differentiable for all x ∈ Do and continuous for all x ∈ D. For
xo ∈ Do let positive constants r, α, β, γ be given with the following
properties:

Sr(xo) = {x|∥x − xo∥ < r} ⊆ Do,

h = αβγ /2 < 1, r =
α

1 − h
,

and let f (x) have the following properties:
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