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a b s t r a c t

Semi-global finite-time exact stabilization of linear time-invariant systems with matched disturbances is
attained using a dynamic output feedback, provided the system is controllable, strongly observable and
the disturbance has a bound affine in the state norm. The novel non-homogeneous high-order sliding-
mode control strategy is based on the gain adaptation of both the controller and the differentiator included
in the feedback. A robust criterion is developed for the detection of differentiator convergence to turn on
the controller at a proper time.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Robust finite-time stabilization is often required in modern
control theory. Traditional (first order) sliding mode (SM) control
(Utkin, 1992) features insensitivity to bounded disturbances acting
in the control channel (matched disturbances). The recently
introduced High-Order SM (HOSM) controllers (Dinuzzo & Ferrara,
2009; Levant, 2001, 2005; Plestan, Glumineau, & Laghrouche,
2008) also allow for the robust finite-time stable output regulation
irrespectively to the output relative degree and provide for the
chattering attenuation option (Boiko, 2009). HOSM controllers
have already found numerous applications; e.g. see Ferrara,
Giacomini, and Vecchio (2007), Kunusch, Puleston, Mayosky, and
Riera (2009), Pisano and Usai (2004) and Shtessel and Tournes
(2009).

HOSM controllers were originally designed for single-input–
single-output (SISO) systems. A list of predesigned controllers for
each relative degree of the output is produced. The controllers
utilize the output derivatives calculated by robust exact finite-
time-convergent HOSM differentiators (Levant, 2003).
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An extension to the multi-input–multi-output (MIMO) case
is obtained in Bartolini, Ferrara, Usai, and Utkin (2000), Defoort,
Floquet, Kokosy, and Perruquetti (2009) and Edwards, Floquet,
and Spurgeon (2008). The whole state is assumed to be known
in Bartolini et al. (2000), and the traditional sign function of the
1st order sliding modes (1-SMs) is replaced with a 2-SM controller
(namely, the sub-optimal algorithm). Robust asymptotically stable
output regulation is provided, and thewhole state is used, not only
the output.

The case of a well-defined vector relative degree is considered
in Defoort et al. (2009) and Edwards et al. (2008). Thus, the MIMO
problem is decomposed into multiple SISO ones, and an output-
based controller is developed. Asymptotic stability is ensured
in Edwards et al. (2008),while the systemhas to be BIBS stablewith
respect to smoothdisturbances. Only anoutput regulationproblem
is considered in Defoort et al. (2009). The results of Defoort et al.
(2009) and Edwards et al. (2008) are only valid for bounded
uncertainties, being inapplicable even to linear time-invariant
(LTI) systems with linear uncertainties. Moreover, in spite of the
finite-time convergence of observers, an important question has
never been considered, how to practically detect the observer
convergence for its feedback utilization.

The main contributions of this paper proposes (1) practical
robust criteria for the differentiator convergence detection; (2) a
novel HOSM-based MIMO output-feedback control strategy for
semi-global finite-time exact state stabilization of disturbed linear
systems. Moreover, the convergence time of the differentiator is
shown to be upper-bounded by a homogeneous function of the
initial differentiation error. The criterion is used to properly turn
on the proposed control. The disturbance is assumed matched
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and bounded by an affine function of the state norm. Both the
controller and differentiator gains are adjusted based on the state
observation. Once the control is bounded by a linear function of the
state norm, the exact state observation is provided independently
of the control aim and control law. Since less control effort
is applied due to the gain adaptation, the chattering effect is
diminished.

Only the conditions of controllability and strong observabil-
ity (Hautus, 1983) are imposed. The existence of the output vec-
tor relative degree is not required. Both controllability and strong
observability are necessary assumptions. Indeed, the former is
needed to steer the system toward the origin, and the latter is
required to recognize the origin proximity in spite of unknown
disturbances.

The results are formally only semi-global, for an initial, though
possibly very rough, state-norm upper bound is needed to start
the observation. The stabilization would be global, if the exact
observation were global. The results are illustrated by a simulation
example.

2. Problem formulation

Consider the system

ẋ = Ax + B[u + w], y = Cx (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, w ∈ Rm are the state, control
input, measured output and perturbation signals, respectively. The
Lebesgue-measurable disturbance w(t, x) is assumed to satisfy a
functional bound, and a rough upper bound is supposed to be
known for the initial state x(t0):

∥w(t, x)∥ ≤ W1∥x∥ + W2, ∀t ≥ t0, ∀x (2)

∥x(0)∥ ≤ x+

0 , (3)

here W1, W2, and x+

0 are known constants. The only real-time
information available for control is the output y(t), and the control
objective is to stabilize the system at the origin x = 0 in finite-time
in spite of the disturbance w.

We assume that rank(B) = m, rank(C) = p, the matrix pair
(A, B) is controllable and the triplet (A, B, C) is strongly observ-
able (Hautus, 1983). Recall that the latter assumption is a necessary
and sufficient condition to reconstruct the state using only output
measurements and it is equivalent to the absence of invariant ze-
ros. This means that any input u(t) + w(t, x(t)) keeping the iden-
tity y = 0 during some time interval also keeps x = 0 on the same
time interval (Hautus, 1983). Obviously all solutions are extend-
able till t = ∞ provided u is bounded by a linear function of the
state norm. Solutions to differential equations and inclusions are
understood in Filippov’s sense (Filippov, 1988).

3. Convergence criterion for HOSM differentiators

Let f (t) ∈ R be a function to be differentiated; then the k-th
order HOSM differentiator (Levant, 2003) takes the form

ż0 = ν0 = −λkL
1

k+1 |z0 − f |
k

k+1 sign(z0 − f ) + z1,

ż1 = ν1 = −λk−1L
1
k |z1 − ν0|

k−1
k sign(z1 − ν0) + z2,

... (4)

żk−1 = νk−1 = −λ1L
1
2 |zk−1 − νk−2|

1
2 sign(zk−1 − νk−2) + zk,

żk = −λ0Lsign(zk − νk−1),

where zi is the estimation of the true derivative f (i)(t). The
differentiator provides for the finite-time exact differentiation
under ideal conditions of exact measurement in continuous time.
The only information needed is an a priori known upper bound
L for |f (k+1)

|. Then an infinite parametric sequence {λi} > 0,

i = 0, 1, . . . , k, . . ., is recursively built, which provides for
the convergence of the differentiators for each order k. Such
parameters are further called proper. In particular, the parameters
λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5, λ5 = 8 are
proper and enough till the 5-th differentiation order.With discrete
sampling the differential equations are replaced by their Euler
approximations. This differentiator provides for the best possible
asymptotic accuracy in the presence of input noises (Kolmogorov,
1962; Levant, 2003).

The reliable derivatives’ estimations are only available after
a finite-time transient. Thus, a controller is to be applied after
the transient. Until now this procedure was performed by
waiting ‘‘enough time’’ to ensure the differentiator convergence. A
preferableway though is to evaluate the transient time or to detect
the differentiator convergence.

Denote σi = (zi − f (i)
0 )/L, σ⃗ = (σ0, . . . , σk). Let N(σ⃗ ) be

any positive-definite homogeneous function of σ⃗ of the weight 1
(Levant, 2005). In particular,N(σ⃗ ) = |σ0|

1/(k+1)
+|σ1|

1/k
+· · ·+|σk|

can be taken.

Theorem 1. Consider the HOSM differentiator (4) of order k with
proper parameters λi. Then there exist two constants 0 < µm ≤ µM ,
such that for every initial time t0 the convergence time T satisfies the
inequality µmS < T < µMS whenever N(σ⃗ (t0)) ≤ S.

Obviously T = O(L−1/(k+1)) with large L. Taken differentiator
(4) with properly chosen λi the constantsµm, µM can be estimated
once and forever by simulation.

Theorem 2. Consider the HOSM differentiator (4) of order k, with
proper parameters {λi}. Let

f (t) = f0(t) + η(t), |f (k+1)
0 (t)| < L, |η(t)| ≤ kηLξ k+1, (5)

where f0(t) is an unknownbasic signal, η(t) is a Lebesgue-measurable
sampling noise, ξ is a positive parameter. Suppose also that f is
sampled with a possibly variable time step τs > 0, and τs ≤ kτ ξ , with
kη , kτ being some positive constants. Then for any positive constants
γ0, γ1, . . . , γk and any kf , 0 < kf < γ0, there exist kη , kτ , γt > 0, such
that if the inequality

|z0 − f (t)| ≤ kf Lξ k+1 (6)

holds at all sampling instants within the time interval of the length
γtξ , then starting from the beginning of this interval the inequalities

|zi − f (i)
0 (t)| ≤ γiLξ k−i+1, i = 0, 1, . . . , k (7)

hold and are kept forever. The transient time estimation from Theo-
rem 1 remains valid with sufficiently small ξ/S.

Obviously, one can arbitrarily increase γt and decrease kf ,
kη , kτ preserving the statement of Theorem 2. In particular, due
to Theorem 1, exact estimations can be ensured at the end
of the observation time interval in the limit case, when the
measurements are exact and continuous, but ξ > 0. It is natural to
determine a set of constants kf , kη and γt by simulation of a single
differentiator.

4. Finite-time exact state observation of strongly observable
linear systems with unknown inputs

Introduce the following notation. Let y(t) ∈ Rp be a vector
function of the full rank, and y[k](t) denote the k-th anti-
differentiator y[k](t) :=

 t
0

 s1
0 · · ·

 sk−1
0 y(sk)dsk . . . ds2ds1 with

y[0](t) := y(t). Let Y [[k]](t) :=


Y [[k−1]](t)

y[k](t)


with Y [[1]](t) :=


y(t)

y[1](t)


.

Recall the following result.

Lemma 1 (Bejarano & Fridman, 2010). Let system (1) be strongly
observable with respect to y(t). Then there exists a computable matrix
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