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This note is concerned with the problem of semi-globally stabilizing a linear system with an input delay
and a constraint on the energy of its input. Under the condition of null controllability with vanishing
energy, the parametric Lyapunov equation based L, low gain feedback is adopted to solve the problem.
The proposed approach is applied to the linearized model of the relative motion in the orbit plane
of a spacecraft with respect to another spacecraft in a circular orbit around the Earth to validate its
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1. Introduction

Linear systems with actuator magnitude saturation have
broad engineering background and are difficult to control. This
class of systems has been extensively studied in the past
several decades, and many control problems have been studied.
Among these problems are global stabilization (Kaliora & Astolfi,
2004; Sussmann, Sontag, & Yang, 1994; Teel, 1992), semi-global
stabilization (Lin, 1998), finite gain stabilization (Liu, Chitour, &
Sontag, 1996), and local stabilization with a maximized domain of
attraction (Hu & Lin, 2001).

On the other hand, control of linear systems in the presence
of time delays, especially delays in the control input, has also
been attracting significant attention for several decades. The delays
in the control input arise from a variety of sources, including
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signal transmission and computation. In fact, the analysis and
design of control systems that takes into account delays in the
control input is a classical problem, and many related problems
have been studied in the literature (see Chen, Gu, & Nett, 1995;
Gu & Liu, 2009; Hale, 1977; Zhang, Zhang, & Xie, 2004, and the
references therein). Control systems with both input delay and
input magnitude saturation have also received much attention in
recent years (see, for example, Lin & Fang, 2007; Mazenc, Mondie, &
Niculescu, 2003; Tarbouriech & da Silva, 2000; Yakoubi & Chitour,
2007, and the references therein).

Similarly to magnitude constraints, energy constraints are
also encountered naturally in practical systems, because any
physical system can only be powered with finite energy. However,
the problem of controlling energy-constrained systems has not
received as much attention as that of controlling magnitude-
constrained systems. Only recently has null controllability with
vanishing energy been studied in Ichikawa (2008) and Priola and
Zabczyk (2003). More recently, under the assumption of null
controllability with vanishing energy, as characterized in Ichikawa
(2008) and Priola and Zabczyk (2003) and by using L, low gain
feedback (Zhou, Lin, & Duan, 2011), we solved the semi-global
stabilization problem for linear systems with energy constraints
on the control inputs.

In the present note, we go a further step beyond (Zhou et al.,
2011) by showing that semi-global stabilization of an input-
delayed linear system subject to an energy constraint can also
be achieved by a special kind of L, low gain feedback, namely,
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parametric Lyapunov equation based low gain feedback, provided
that the open-loop system is null controllable with vanishing
energy in the absence of input delay. By semi-global stabilization
we mean that a controller, whose output satisfies an energy
constraint, is designed such that the closed-loop system is locally
asymptotically stable with its domain of attraction containing an
a priori given arbitrarily large bounded set of the state space. It is
shown that the delay in the control input can be any arbitrarily
large finite value. These results complement those existing results
in Zhou et al. (2011). The effectiveness of the proposed approach is
validated with its application to the linearized model of the relative
motion in the orbit plane of a spacecraft with respect to another
spacecraft in a circular orbit around the Earth.

2. Problem formulation

Consider a linear system
x(t) = Ax(t) + Bu(t), (1)
where x(t) € R" and u(t) € R™ are, respectively, the state and
input vectors. Let x (t, xo, u) denote the solution of (1) with initial

condition xy and input u. Denote
T
| @ <o } .
0

We recall the following definition of null controllability with
vanishing energy for system (1).

L, (0, T,R™) £ {f :[0,T] - R™

Definition 1 (Ichikawa, 2008). System (1) (or the matrix pair
(A, B)) is said to be null controllable with vanishing energy (NCVE)
if, for each initial x(0) = xo, there exists a sequence of pairs
(Ty,uny),0 < Ty < oo,uy € L (0, Ty, R™), such that x(Ty,

. T;
Xo, uy) = 0and limgy .o fo" lluy (O)[1*dt = 0.

Roughly speaking, a system is NCVE if, for any initial condition,
there exists a control input with an arbitrarily small energy that
steers the state of the system to the origin. This class of systems and
the relating control problems have many applications in practice.
For example, the relative motion of a spacecraft with respect to
another spacecraft in a circular orbit around the Earth is described
by a nonlinear system whose linearized version is NCVE (Ichikawa,
2008). Certainly, it is important to accomplish a control objective
with an arbitrarily small amount of energy expended.

Lemma 1 (Priola & Zabczyk, 2003). Linear system (1) is NCVE if
and only if (A, B) is controllable in the ordinary sense and all the
eigenvalues of A are located in the closed left-half s-plane.

In this note, we consider the linear time-delay system
x(t) = Ax(t) +Bu(t — 1), (2)

where x(t) € R" and u(t) € R™ are, respectively, the state and
input vectors, and t > 0 represents the delay in the control input.
Throughout this note, we use %, ; = ¢ ([—7, 0], R") to denote the
Banach space of continuous vector functions mapping the interval
[—7, 0] into R" with the topology of uniform convergence, and
X¢ € %y . to denote the restriction of x (t) to the interval [t — 7, t]
translated to [—t, 0], that is, x, () = x (t + 0) , V0 € [—t, 0O]. For
any ¥ € %y, we define ||/ ||. = supye|_; o) I (0)||. The problem
we are interested in is as follows.

Problem 1 (L,-Semi-Global Stabilization). Let 2 C %, be a
bounded compact set,and let E > 0be a given scalar. Find a control

u € Ug(E) with
/ lu®|2 dt < Ez}

such that system (2) is asymptotically stable with £2 contained in
the domain of attraction.

Ug(E) = {u :[—7t,00) - R

3. Extension of L,-vanishment to nonlinear systems

Toward solving Problem 1, we first recall the L, low gain
feedback approach studied in Zhou et al. (2011). Assume that the
matrix A (y) : [0, 1] — R™" is a continuous matrix function of y
and such that L (A(y)) € C,Vy € (0,1]and A (A(0)) C C % &
{s : Re{s} < 0}.

Definition 2. LetS (y) : [0, 1] > R™"and A (y) : [0, 1] - R™"
be as stated above. Then (S,A) = (S(y),A(y)) is said to be L,-
vanishing if

o N3
lim [se],  tim ( [ 1se clt) —o.
y—0t 2 y—0t 0

A couple of characterizations for L,-vanishment were presented
in Zhou et al. (2011), based on which the following new design
method, named L, low gain feedback, was introduced.

Definition 3 (L, Low Gain Feedback). Assume that (A, B) € (R”X“,

R”X’") is NCVE. A stabilizing feedback gain K (y) : [0, 1] € R™*"
is said to be an L, low gain feedback if (K (y),A — BK (y)) is
L,-vanishing.

By using this L, low gain feedback, it is shown in Zhou et al.
(2011) that Problem 1 can be solved for the special case of t = 0
under the condition of null controllability with vanishing energy.
In this note, we will further show that Problem 1 is also solvable for
the general situation of t # 0 under the same condition. Moreover,
we can further impose, without loss of generality, the following
assumption on the system (Zhou et al., 2011).

Assumption 1. (A,B) € (R"X", R”X’") is controllable and all the
eigenvalues of A are on the imaginary axis.

Consider the following family of linear systems:

x(t) = A(y) x(t),
y() =S (y)x(0),

where (S (y),A(y)) is as defined in Definition 2 and y € [0, 1].
Notice that

0 5 1
Mm=<f anwwﬂdQ.
0

Then it follows from Definition 2 that (S (y) , A (y)) is L-vanishing
if and only if the L,-norm of the output of system (3) with arbitrary
bounded initial condition xo € R" approaches zero as y does. This
observation implies the possibility of extending the definition of
L,-vanishment for matrix pair (S (), A (y)) to nonlinear systems.

x(0) = x9 € R", (3)

Definition 4. Consider the family of nonlinear systems

x(t) =A(y, (1)),
y(O) =Sy, x(),

where A (y, x) : [0, 1] x R" — R" is continuous with respect to y
and globally Lipschitz with respect to x, S (y,x) : [0, 1] x R* —
R™ is continuous, and y € [0, 1]. Assume that, for an arbitrary
y € (0, 1], the system in (4) is globally asymptotically stable. Then
the system in (4) is said to be Ly-vanishing if ||| < D < c0 =
lim, o+ [lyll,, = 0.

x(0) = xo € R, (4)

The following simple results on L,-vanishment can be easily
derived. The idea found in the proof of this result will be adopted
to prove our main results in the next section.
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