Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions

Shengqu Zhang^{a,b}, Yuxin Yang^c, Yingna Guo^a, Wan Guo^a, Mei Wang^a, Yihang Guo^{a,*}, Mingxin Huo^{c,*}

^a School of Chemistry, Northeast Normal University, Changchun 130024, PR China

^b Analytical and Testing Center, Beihua University, Jilin 132013, PR China

^c School of Environment, Northeast Normal University, Changchun 130024, PR China

HIGHLIGHTS

GRAPHICAL ABSTRACT

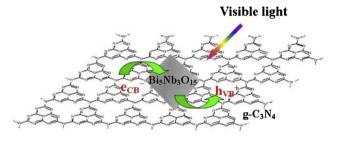
- Graphitic C₃N₄/Bi₅Nb₃O₁₅ heterojunctions were demonstrated for the first time.
- Graphitic C₃N₄/Bi₅Nb₃O₁₅ exhibited enhanced visible-light photocatalytic activity.
- Graphitic C₃N₄/Bi₅Nb₃O₁₅ possessed excellent photocatalytic stability.
- The excellent photocatalytic activity of graphitic C₃N₄/Bi₅Nb₃O₁₅ was explained.

ARTICLE INFO

Article history: Received 13 May 2013 Received in revised form 29 June 2013 Accepted 12 July 2013 Available online xxx

Keywords: Graphitic carbon nitride Bismuth niobate Heterojunction Visible-light photocatalysis Organic pollutant

АВЅТКАСТ


A series of graphitic carbon nitride/bismuth niobate (g-C₃N₄/Bi₅Nb₃O₁₅) heterojunctions with g-C₃N₄ doping level of 10–90 wt% were prepared by a facile milling-heat treatment method. The phase and chemical structures, surface compositions, electronic and optical properties as well as morphologies of the prepared g-C₃N₄/Bi₅Nb₃O₁₅ were well-characterized. Subsequently, the photocatalytic activity and stability of g-C₃N₄/Bi₅Nb₃O₁₅ were evaluated by the degradation of aqueous methyl orange (MO) and 4-chlorophenol (4-CP) under the visible-light irradiation. At suitable g-C₃N₄ doping levels, g-C₃N₄/Bi₅Nb₃O₁₅ exhibited enhanced visible-light photocatalytic activity compared with pure g-C₃N₄ or Bi₅Nb₃O₁₅. This excellent photocatalytic activity was revealed in terms of the extension of visible-light response and efficient separation and transportation of the photogenerated electrons and holes due to coupling of g-C₃N₄ and Bi₅Nb₃O₁₅. Additionally, the active species yielded in the pure g-C₃N₄- and g-C₃N₄/Bi₅Nb₃O₁₅-catalyzed 4-CP photodegradation systems were investigated by the free radical and hole scavenging experiments.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Photocatalytic oxidation of aqueous organic pollutants into CO_2 , water and other nonhazardous compounds is one of the few effective approaches to remove the organic pollutants in water

completely in an environmentally friendly manner [1–6]. One of the primary challenges in practical application of this technique is to engineer a robust, cheap and stable photocatalyst that exhibits obvious visible-light absorption as well as efficient separation and transportation of the photogenerated holes (h_{VB}^+) and electrons (e_{CB}^-). Although it is very effective under near-UV light irradiation, conventionally applied TiO₂ photocatalyst is not ideal for this purpose because TiO₂ performs rather poorly in the processes associated with solar photocatalysis [7]. TiO₂ can utilize no more than 5% of the total solar energy impinging on the surface of

^{*} Corresponding authors. Tel.: +86 431 85098705; fax: +86 431 85098705. *E-mail addresses*: guoyh@nenu.edu.cn (Y. Guo), huomx097@nenu.edu.cn (M. Huo).

^{0304-3894/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jhazmat.2013.07.025

the earth due to its wide bandgap (3-3.2 eV). Therefore, much effort has been devoted to developing more efficient and stable photocatalysts. On the one hand, new TiO₂-based photocatalytic materials were designed including metal or non-metal doping and heterostructuring design of integrated multi-semiconductor systems. Purposes of these designs are to promote the separation of $h_{VB}^{+}-e_{CB}^{-}$ pairs and/or to improve the sunlight harvesting ability of the photocatalysts [8]. On the other hand, the alternative photocatalysts to TiO₂ for solar or visible-light photocatalysis applications has emerged during the last decade. Among these, metal oxides with d^{10} main group elements (e.g. Bi₂O₃, In₂O₃ or Ga₂O₃) as well as complex metal oxides containing the cations of d^0 and/or d^{10} electronic configurations (e.g. niobates, vanadates, tungstates, titanates, tantalates and germanates) are the most successful alternative photocatalysts [7,9]. These metal oxides or complex metal oxides possess steep absorption edges in the visible-light region, being different from the more structured spectrum of the doped TiO₂ materials.

Bismuth niobate (Bi₅Nb₃O₁₅) is one of the alternative photocatalysts to TiO₂, and it possesses mixed layered Aurivillius phase structure expressed as $[Bi_2O_2] + [NbO_4] + [Bi_2O_2] + [BiNb_2O_4]$. Bi₅Nb₃O₁₅ is composed of both main group Bi element of $d^{10}s^2$ electronic configurations and transition metal Nb element of d^0 configurations, which can introduce s-states into the valence band (VB). Hybridization of these s-states with O 2p states contributes to an up-shift of the top of the VB and thereby to a narrowing of the bandgap. Bi₅Nb₃O₁₅ has been conventionally prepared by a high temperature solid-state route, which results in the compound with large agglomerated particles and irregular morphology [10]. In our recent work, a mild hydrothermal treatment method was applied for the first time to obtain single-crystalline orthorhombic Bi₅Nb₃O₁₅ with octahedron-like morphology, and the aggregation of Bi₅Nb₃O₁₅ particles was effectively inhibited. Bandgap of the prepared Bi₅Nb₃O₁₅ is 2.9 eV that allows a light absorption edge extend to 450 nm, and the photocatalytic tests show Bi₅Nb₃O₁₅ exhibits visible-light photocatalytic activity toward the degradation of a light insensitive compound, tetrabromobisphenol A [11,12]. However, it should be admitted that the photocatalytic activity of pure Bi₅Nb₃O₁₅ is usually unsatisfactory due to the narrowed visible-light response range.

In addition to the classic semiconductor photocatalysts, a fascinating metal-free sustainable photocatalyst, graphite-like carbon nitride (g-C₃N₄), has recently attracted worldwide attention due to its polymeric π -conjugated structure, leading to its remarkable physical and chemical properties [13,14]. For example, g-C₃N₄ exhibits an appealing electronic structure with bandgap of 2.7 eV that allows a maximal light absorption in the visible-light region (400-460 nm). Additionally, g-C₃N₄ can be feasibly synthesized via thermal polycondensation of cheap nitrogen rich precursors such as cyanamide, dicyandiamide, melamine, urea, ammonium thiocyanate, thiourea and triazine [15-30]. Nonetheless, metal-free g-C₃N₄ suffers from disadvantages such as rapid recombination of e_{CB}^{-} and h_{VB}^{+} as well as low visible-light utilization efficiency [15,28,31-37]. Accordingly, the development of reliable and facile strategies to fabricate the modified g-C₃N₄-based photocatalysts with unique photocatalytic performances is of growing interests. For this purpose, g-C₃N₄-based heterostructured photocatalysts such as g-C₃N₄/TiO₂, g-C₃N₄/TaON, g-C₃N₄/ZnO and g-C₃N₄/Bi₂WO₆ have been constructed, and the enhanced photocatalytic activity of g-C₃N₄/semiconductor heterojunctions with respect to g-C₃N₄ is revealed by the fast separation and transportation of h_{VB}^+ and e_{CB}^- carriers [38–41].

In the search for novel alternative photocatalyst to TiO_2 and further improving the visible-light photocatalytic activity of $g-C_3N_4$ or $Bi_5Nb_3O_{15}$, herein, a series of $g-C_3N_4/Bi_5Nb_3O_{15}$ heterojunctions with different $g-C_3N_4$ doping levels (10–90 wt%) are developed by

a simple milling-heat treatment method. The visible-light response range of Bi₅Nb₃O₁₅ is extended by the introduction of g-C₃N₄, while a more efficient photogenerated carrier separation of g-C₃N₄ can be realized by coupling with Bi₅Nb₃O₁₅. The phase and chemical structures, surface compositions, electronic and optical properties as well as morphologies of the g-C₃N₄/Bi₅Nb₃O₁₅ heterojunctions were well characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectra (XPS), UV-vis diffuse reflectance (UV-vis/DRS), photoluminescence (PL) spectroscopy and transmission electron microscope (TEM). Subsequently, the visible-light photocatalytic activity of the g-C₃N₄/Bi₅Nb₃O₁₅ was evaluated by the degradation of two typical organic pollutants, dye methyl orange (MO) and light insensitive compound 4-chlorophenol (4-CP). Catalytic tests show that as-prepared g-C₃N₄/Bi₅Nb₃O₁₅ exhibit excellent visible-light photocatalytic activity to decompose of MO or 4-CP, and at suitable $g-C_3N_4$ doping levels the visible-light photocatalytic activity of the heterojunctions outperforms the sating $g-C_3N_4$ or $Bi_5Nb_3O_{15}$. This enhanced photocatalytic activity is explained by the combination of the extended light absorption and more efficient separation and transportation of the h_{VB}^+ and e_{CB}^- carriers. Special attention is paid to provide direct evidence of the enhanced separation and transportation ability of the photogenerated carriers in the heterojunction system by PL and photoelectrochemistry measurements. Simultaneously, the active species yielded in the pure g-C₃N₄and g-C₃N₄/Bi₅Nb₃O₁₅-catalyzed 4-CP photodegradation systems were investigated by free radical and hole scavenging experiments. Finally, the catalytic stability of as-prepared g-C₃N₄/Bi₅Nb₃O₁₅ was evaluated through five consecutive cycles.

2. Experimental

2.1. Preparation of $g-C_3N_4/Bi_5Nb_3O_{15}$

 $Bi_5Nb_3O_{15}$ was prepared by our previous reported hydrothermal treatment method [11,12]. $Bi(NO_3)_3 \cdot 5H_2O$ (2 mmol) and NbCl₅ (1.4 mmol) were dissolved in ethanol (10 mL), respectively, under vigorous stirring at room temperature for 0.5 h. The obtained NbCl₅ solution was added dropwise into the above $Bi(NO_3)_3$ solution. After stirring for 0.5 h, NH₃·H₂O (13 mol L⁻¹) was added into the mixture to adjust the acidity of the system to pH 9. Subsequently, the solution was stirred for 0.5 h to obtain a white suspension at room temperature. The white suspension was transferred into an autoclave and then heated to 200 °C for 24 h with a heating rate of 2 °C min⁻¹. After cooling down to room temperature, the product was filtered and washed with distilled water and ethanol for three times, and then it was dried at 80 °C.

Graphitic C₃N₄ powder was prepared by heating urea in a muffle furnace. In a typical run, 10g of urea powder was put into a semiclosed alumina crucible with a cover. The crucible was heated to 250 °C for 1 h, 350 and 550 °C for 2 h, successively, at a heating rate of 2 °C min⁻¹. The resultant yellow powder was washed with distilled water and ethanol for two times, successively, and then it was dried at 80 °C.

The g-C₃N₄ and Bi₅Nb₃O₁₅ powders were thoroughly ground together to achieve a homogeneous mixture. The resultant mixture was collected and calcined at 400 °C for 1 h in a muffle furnace. After cooling down to room temperature, the product was obtained and denoted as g-C₃N₄/Bi₅Nb₃O₁₅-*x*, where *x* refers to g-C₃N₄ loading (wt%) in the composite.

2.2. Characterization of g-C₃N₄/Bi₅Nb₃O₁₅

Powder XRD patterns were obtained on a D/max-2200 VPC diffractometer using CuK α radiation. FT-IR spectra were recorded

Download English Version:

https://daneshyari.com/en/article/6971911

Download Persian Version:

https://daneshyari.com/article/6971911

Daneshyari.com