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a b s t r a c t

This paper focuses on adaptive fuzzy tracking control for a class of uncertain single-input /single-
output nonlinear strict-feedback systems. Fuzzy logic systems are directly used to approximate unknown
and desired control signals and a novel direct adaptive fuzzy tracking controller is constructed via
backstepping. The proposed adaptive fuzzy controller guarantees that the output of the closed-loop
system converges to a small neighborhood of the reference signal and all the signals in the closed-loop
system remain bounded. Amain advantage of the proposed controller is that it contains only one adaptive
parameter that needs to be updated online. Finally, an example is used to show the effectiveness of the
proposed approach.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the past years, backstepping-based nonlinear adaptive con-
trol has been paid considerable attention (Freeman & Kokotovic,
1996; Jiang & Hill, 1999; Kanellakopoulos, Kokotovic, & Morse,
1991; Krstic, Kanellakopoulos, &Kokotovic, 1992; Lin&Qian, 2001;
Liu, Gu, & Zhou, 1999; Marino & Tomei, 1993a,b; Schwartz, Isidori,
& Tarn, 1999). All the aforementioned works are based on the
assumption that the uncertain nonlinearities in systems are ei-
ther known functions whose parameters are unknown and lin-
ear with respect to those known functions, or bounded by known
nonlinear functions. Thus, if such a prior knowledge of the struc-
ture or the upper-bounds of these unknown nonlinearities is not
available, these approaches become infeasible. Such restrictions
have been removed by using adaptive neural network control (Ge,
Hang, & Zhang, 2000; Ge, Lee, & Harris, 1998; Ge & Wang, 2002;
Kwan & Lewis, 2000; Lewis, Yesildirek, & Liu, 2000; Zhang, Ge, &
Hang, 2000; Zhang, Peng, & Jiang, 2000), or adaptive fuzzy con-
trol (Wang & Mendel, 1992) (Chen, Li, & Chang, 1996; Tong &
Li, 2003; Wang, 1993; Wang, Chan, & Liu, 2000). In the afore-
mentioned literatures, neural networks or fuzzy logic systems are
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employed to approximate the unknown nonlinearities and the
backstepping technique is implemented to construct controllers.
The proposed adaptive controllers guarantee the uniform ultimate
boundedness of all the signals in the closed-loop system. However,
a common weakness of these control methods is that the num-
ber of adaptation laws depends on the number of the neural
network nodes or the number of the fuzzy rule bases. With an
increase of neural network nodes or fuzzy rules, the number of
parameters to be estimated will increase significantly. As a result,
the on-line learning time becomes prohibitively large. To solve this
problem, Yang, Feng, and Ren (2004) and Yang, Zhou, and Ren
(2003) considered the norm of the ideal weighting vector in fuzzy
logic systems as the estimation parameter instead of the elements
of weighting vector. Thus, the number of adaptation laws is
reduced considerably.
Inspired by thework of Yang et al. (2003, 2004), wewill develop

a new direct adaptive fuzzy control approach in this paper. Unlike
all the existing results on adaptive fuzzy control, Mamdani type
fuzzy systems are used to directly approximate the desired control
input signals instead of the unknown nonlinearities in systems. In
this way, a direct adaptive fuzzy control method is developed. The
main advantage of the developed method is that for an n-th order
strict feedback nonlinear system, only one parameter is needed to
be estimated on-line regardless of the number of fuzzy rule bases
used. Therefore, the computation burden is significantly reduced
and the algorithm is easily realized in practice.

2. Preliminaries and problem formulation

Consider the following SISO nonlinear system.
ẋi = fi(x̄i)+ gi(x̄i)xi+1 + di(t), 1 ≤ i ≤ n− 1,

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2009.02.025

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:chenbing1958@yahoo.com.cn
mailto:xiaoping.liu@lakeheadu.ca
mailto:kfiu@lakeheadu.ca
mailto:linchong-2004@hotmail.com
http://dx.doi.org/10.1016/j.automatica.2009.02.025


B. Chen et al. / Automatica 45 (2009) 1530–1535 1531

ẋn = fn(x̄)+ gn(x̄)u+ dn(t),
y = x1, (1)
where x̄ = [x1, . . . , xn]T ∈ Rn is the state vector, u ∈ R
and y ∈ R are the control input and output, respectively. x̄i =
[x1, . . . , xi]T, fi(.) and gi(.), i = 1, 2, . . . , n are unknown nonlinear
smooth functions with fi(0) = 0, and di(.), i = 1, 2, . . . , n, are
the unknown external disturbances and satisfy |di(t)| ≤ d̄i with d̄i
being a constant.
In this paper, a fuzzy logic systemwill be used to approximate a

continuous function f (x) defined on some compact set. Adopt the
singleton fuzzifier, the product inference, and the center-average
defuzzifier to deduce the following fuzzy rules:
Ri: IF x1 is F i1 and . . . and xn is F

i
n

THEN y is Bi (i = 1, 2, . . . ,N),
where x = [x1, . . . , xn]T ∈ Rn and y ∈ R are the input and output of
the fuzzy system, respectively, F ji andB

i are fuzzy sets inR. Since the
strategy of singleton fuzzification, center-average defuzzification
and product inference is used, the output of the fuzzy system can
be formulated as

y(x) =

N∑
j=1
Φ̄j

n∏
i=1
µF ji
(xi)

N∑
j=1
[

n∏
i=1
µF ji
(xi)]

,

where Φ̄j is the point at which fuzzymembership functionµBj(Φ̄j)
achieves its maximum value, which is assumed to be 1. Let pj(x) =∏n

i=1 µF ji
(xi)∑N

j=1[
∏n
i=1 µF ji

(xi)]
, P(x) = [p1(x), p2(x), . . . , pN(x)]T and Φ =

[Φ̄1, . . . , Φ̄N ]
T. Then the fuzzy logic system can be rewritten as

y(x) = ΦTP(x). (2)
If all memberships are chosen as Gaussian functions, the following
lemma holds.

Lemma 1 (Wang &Mendel, 1992). Let f (x) be a continuous function
defined on a compact set Ω . Then for any given constant ε > 0, there
exists a fuzzy logic system (2) such that

sup
x∈Ω

∣∣f (x)− ΦTP(x)∣∣ ≤ ε.
Assumption 1. The sign of gi(x̄i) does not change and there exist
constants bm and bM such that for i = 1, . . . , n,

0 < bm ≤ |gi(x̄i)| ≤ bM .

Assumption 1 means that the unknown functions gi(.) are
either strictly positive or negative. Without loss of generality, it is
further assumed that gi ≥ bm. In addition, because the constants
bm and bM are not used for controller design, they can be unknown.

Assumption 2. The reference signal yd(t) and its time derivatives
up to the n-th order are continuous and bounded.

3. Main result

For the system (1), backstepping-based design procedure
contains n steps. At Step i (1 ≤ i ≤ n), the desired but unknown
control signal is first considered to stabilize the first i subsystems
theoretically. Then, a fuzzy logic systemΦTi Pi(Xi)will be employed
to approximate this unknown control signal, consequently, to
construct the virtual control signal. The real tracking control law u
will be designed at the last step. To develop a backstepping-based
design procedure, we first define a constant as follows:

θ = max
{
1
bm
‖Φi‖

2
: i = 1, 2, . . . , n

}
. (3)

Obviously, θ is an unknown positive constant because bm and ‖Φi‖
are unknown.
At Step i, the feasible virtual control signal is constructed as

αi(Xi) =
−1
2a2i
eiθ̂PTi (Xi)Pi(Xi) (4)

where ei = xi − αi−1 with α0 = yd, Xi = [x̄Ti , θ̂ , ȳ
(i)T
d ]

T, ȳ(i)d denotes
the vector of yd and up to its i-th order time derivative. The virtual
control signals α̂i will be specified at Step i.

Theorem 1. For the reference signal yd(t), consider the system (1)
satisfying Assumptions 1 and 2. Suppose that for 1 ≤ i ≤
n, the packaged unknown functions α̂i, i = 1, 2, . . . , n, can be
approximated by the fuzzy logic systems in the sense that the
approximating errors are bounded. If a control law is chosen as

u = −
1
2a2n
enθ̂PTn (Xn)Pn(Xn), (5)

with the intermediate virtual control signals αi defined by (4) and the
adaptive law

˙̂
θ =

n∑
i=1

r
2a2i

(xi − αi−1)2PTi (Xi)Pi(Xi)− k0θ̂ , (6)

where the constants r > 0, k0 > 0, and ai > 0 (i = 1, 2, . . . , n)
are design parameters, then all the signals in the closed-loop system
remain bounded. Furthermore, for any given scalar ε > 0, the
controller parameters can be tuned such that

lim
t→∞
‖y− yd‖2 ≤ ε2,

The proof of Theorem 1 consists of two steps. First, a systematic
design scheme is presented based on the backstepping approach.
Then, the stability analysis of the closed-loop system is carried out.

3.1. Adaptive fuzzy control design

In the following, for the purpose of simplicity, the time variable
t and the state vector x̄i will be omitted from function expressions
and let Pi = Pi(Xi). In addition, it is easy to prove from (6) that if
θ̂ (0) ≥ 0, then θ̂ (t) ≥ 0 for all t ≥ 0. In fact, it is always reasonable
to choose θ̂ (0) ≥ 0 in a practical situation, as θ̂ is an estimation of
θ . This conclusion will be used in each design step.

Step 1. Define the tracking error as e1 = x1 − yd and consider a
Lyapunov function candidate as

V1 =
1
2
e21 +

bm
2r
θ̃2, (7)

where θ̃ = θ − θ̂ . Differentiating V1 yields

V̇1 = e1 (f1 + g1x2 − ẏd + d1)−
bm
r
θ̃
˙̂
θ

≤ e1
(
g1x2 + f̄1

)
+
1
2
ρ2d̄21 −

1
2
g−21 e

2
1 −

bm
r
θ̃
˙̂
θ, (8)

where f̄1(X1) = f1 + 1
2ρ
−2e1 + 1

2g
−2
1 e1 − ẏd and the completion of

squares are used for the term e1d1 with ρ > 0 being a constant.
To stabilize this system, take the intermediate control signal as
α̂1(X1) = −g−11

{
k1e1 + f̄1

}
with k1 being a positive constant.

Further, add and subtract g1α̂1 in the last bracket in (8) to obtain
the following inequality.
V̇1 ≤ −k1e21 + e1g1

(
x2 − α̂1

)
+
1
2
ρ2d̄21 −

1
2
g−21 e

2
1 −

bm
r
θ̃
˙̂
θ. (9)

However, α̂1 cannot be implemented in practice as it contains the
unknown functions f1 and g1. Thus, according to Lemma 1, for any
given ε1 > 0, there exists a fuzzy logic systemΦT1P1(X1) such that
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