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a b s t r a c t

This article introduces results on the control of gene networks, in the context of piecewise-affinemodels.
We propose an extension of this well-documented class of models, where some input variables can
affect the main terms of the equations, with a special focus on the case of affine dependence on inputs.
Some generic control problems are proposed, which are qualitative, respecting the coarse-grained nature
of piecewise-affine models. Piecewise constant feedback laws that solve these control problems are
characterized in terms of affine inequalities, and can even be computed explicitly for a subclass of inputs.
The latter is characterized by the condition that each state variable of the system is affected by atmost one
input variable. These general feedback laws are then applied to a two-dimensional example, consisting in
two genes inhibiting each other. This example has been observed in real biological systems, and is known
to present a bistable switch for some parameter values. Here, the parameters can be controlled, allowing
to express feedback laws leading to various behaviours of this system, including bi-stability as well as
situations involving a unique global equilibrium.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This work deals with control theoretic aspect of a class of
piecewise-affine differential equations, which has been introduced
in the 1970s by Glass (1975) to model genetic and biochemical in-
teraction networks. Various aspects of the autonomous dynamics
of these equations have been studied by different authors, e.g. Ed-
wards, Siegelmann, Aziza, and Glass (2001), Farcot (2006), Glass
(1975) and Gouzé and Sari (2003). Besides theoretical aspects,
they have been used also as models of concrete biological systems
(de Jong, Geiselmann, Batt, Hernandez, & Page, 2004; Ropers, de
Jong, Page, Schneider, & Geiselmann, 2006), and efficient proce-
dures have been proposed to identify their parameters (Drulhe,
Ferrari-Trecate, de Jong, & Viari, 2006; Perkins, Hallett, & Glass,
2004). This proves their possible use as models guiding experi-
mental researches on gene regulatory networks. Such experiments
have been carried out extensively during the recent years, often on
large scale systems, thanks to the extraordinary developments of
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large throughputmethods used in the investigation of biochemical
systems.

Furthermore, recent advances have shown that such networks
may not only be studied and analyzed on existing biological
species, but also synthesized in labs (Becksei & Serrano, 2000;
Elowitz & Leibler, 2000; Gardner, Cantor, & Collins, 2000). This
latter aspect strongly motivates the elaboration of a control theory
for these systems (Andrianantoandro, Basu, Karig, & Weiss, 2006;
Hasty, Isaacs, Dolnik, McMillen, & Collins, 2001; Kobayashi et al.,
2004). This work is an attempt in this direction: piecewise-affine
models are treated in the case where production and degradation
terms can be modified during an experiment, a fact we model by
introducing continuous input variables to control the system.

Thebiological interpretation of these inputs is that an additional
biochemical compound is added to the system, or some physical
parameter is changed. Such a modification may then activate, or
inhibit the production or degradation rates of species involved in
the system. Among concrete realizations, some specific inhibitors
or activators could be introduced in the system, as is done in
synthetic biology (Kobayashi et al., 2004). Other techniques, such
as directed mutagenesis, the use of interfering RNA (siRNA and
miRNA) (Isaacs, Dwyer, & Collins, 2006; Isaacs et al., 2004), could
also modify production or degradation rates. More radically, gene
knock-in or knock-out techniques could be handled within this
framework, their on/off nature being described by restricting the
input values to a discrete set.

Being piecewise linear, the models that are studied here can
be seen as particular switched or hybrid systems. As such, they
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might be handled usingmore general tools, tailored for these broad
classes (El-Farra, Gani, & Christofides, 2005; Johansson, 2004; Sun
&Ge, 2005). However,whereas a specialization of these techniques
would concern steady states and their stability, we propose more
specific feedback laws, notably to control trajectories across a
prescribed sequence of boxes, which might include oscillatory
behaviours. Moreover, we take advantage of the specific form of
systems we consider.

Other comparable techniques are those developed in a series
of papers treating multi-affine dynamical systems defined on
rectangles (Belta, Habets, & Kumar, 2002; Belta & Habets, 2004;
Habets & van Schuppen, 2004). The starting point of these different
methods and algorithms is the control of all trajectories of a
multi-affine dynamical system toward a specified facet of a full-
dimensional rectangle in state space. The input values have to
satisfy a system of 2n−1 inequalities (one for each vertex of the
exit facet). Being affine in rectangular regions of state space, the
systems introduced here could be handled with these techniques.
However, our method requires to check a number of inequalities
that is proportional to n, and which can even be solved explicitly
in some cases, improving drastically the complexity of a blind
application of more general techniques.

The paper is organized into threemain sections. In Section 2, the
investigated model is introduced. Then in Section 3, we formulate
generic control problems, whose solutions are characterized in
Section 3.3. In Section 4 we illustrate the method on a classical
two-dimensional example: the toggle switch, showing notably how
to induce bi-stability in this system. A final section discusses the
results, and the possible outcomes of this work.

2. Piecewise-affine models

2.1. The Autonomous case

The usual form of piecewise-affine gene network models may
be:

dx
dt

= κ(x) − Γ(x)x. (1)

κ(x) ∈ Rn
+
is a production term, and Γ(x) a diagonal matrix with

positive diagonal entries, representing degradation rates of the
system. Both are piecewise constant with a rectangular underlying
partition, see below.

The fact that κi and the γi are piecewise constant of x is
due to the switch-like nature of the feedback regulation in gene
networks. The variable xi is a concentration (ofmRNAor of protein),
representing the expression level of the ith gene among n, and
ranges in some interval of the form [0,maxi]. When xi reaches a
threshold value, some other gene in the network, say gene number
j, is suddenly activated (resp. inhibited), and thus expressed with
a different production rate: the value of κj (resp. γj) changes. For
each i ∈ {1 · · · n} there is thus a finite set of threshold values:

Θi = {θ1i . . . θ
qi−1
i }, (2)

supposed ordered: 0 < θ1i < · · · < θ
qi−1
i < maxi. Although

the extreme values may not be crossed, we denote θ0i = 0, and
θ
qi
i = maxi by convention.
By definition of κ and Γ , the axes of the state space will be

partitioned into open segments between thresholds. Since the
extreme values will not be crossed by the flow, the first and the
last segments include one of their endpoints:

Di ∈ Θi ∪ {[θ0i , θ1i ), (θ
qi−1
i , θ

qi
i ]} ∪ {(θ

j
i, θ

j+1
i ) | j ∈ {1 · · · qi − 2}}.

Each product D =
∏n

i=1 Di defines a rectangular domain, whose
dimension is the number of non-singleton Di. When dimD = n,
one usually says that it is a regulatory domain, or regular domain,

and those domains with lower dimension are called switching
domains, or singular domains, see de Jong et al. (2004). In particular,
singular domains of dimension n − 1 are often called walls.

LetDr andDs denote the collections of regulatory and switching
domains, respectively. The underlying regions in state space are
denoted by | · |, i.e. for example |Dr| =

⋃
D∈Dr

D is the whole
state space with all threshold hyperplanes removed. On this set,
the dynamics will be called hereafter regular dynamics.

On |Ds| on the other hand, the flow is in general only defined
in a weak sense, yielding what will be mentioned as the singular
dynamics. In short, the latter is usually (de Jong et al., 2004;
Ropers et al., 2006) presented as a set-valued version of the regular
dynamics, applying the technique developed by Filippov, and first
applied to systems of the form (1) in Gouzé and Sari (2003). We
refer the interested reader to the mentioned literature for more
thorough treatments of singular solutions.We just recall that walls
such that flow lines are directed in opposite directions on their
two sides are usually called white (resp. black) walls if repelling
(resp. attracting). Moreover, it can be shown that the regular
dynamics can be extended properly on any other wall – then called
transparent – and thus on a dense subset of |Ds| in tame situations.

2.1.1. Regular dynamics
Regulatory domains form the main part of the state space.

Moreover, on any D ∈ Dr , κ and Γ are constant, and thus
Eq. (1) is affine. Its solution is explicitly known:

∀i ϕi(x, t) = xi(t) =
κi

γi
+ e−γit

(
xi(0) −

κi

γi

)
, (3)

and is valid for all t ∈ R+ such that x(t) ∈ D . It follows immediately
that

φ(D) = (φ1, . . . ,φn) =

(
κ1

γ1
, . . . ,

κn

γn

)
is an attractive equilibrium point for the flow (3). If it does not
belong to D , it is not a real equilibrium for system (1), since the
flow will reach the boundary ∂D in finite time. At that time, the
value of κ or Γ will change, and that of φ accordingly. The point
φ(D) is often called focal point of the domain D .

A convenient notation will be the following: each domain
D ∈ Dr , with closure of the form c`(D) =

∏n
i=1[θ

ai−1
i , θ

ai
i ],

can be represented by the integer vector a = (a1, . . . , an). Then
one defines V =

∏n
i=1{1 · · · qi} ' Dr . Regular domains and

their representatives in V will be constantly identified, leading to
talk about some “domain a”, or noting focal points φ(a). Then, a
discretizing mapping d = (d1 . . . dn) : |Dr| → V associates to
a point lying inside a regular domain the discrete representative
of this domain. One can also naturally define a set of transitions
E ⊂ V × V , where (a, b) ∈ E iff some continuous trajectory
successively crosses domains a and b. Hence one gets a transition
graph, defined as the pair TG = (V, E). It can be shown that the
following is appropriate, see e.g. Farcot and Gouzé (2006).

Definition 1 (Transition Graph). TG = (V, E), where V =∏n
i=1{1 · · · qi}, and (a, b) ∈ E if and only if b = a and d (φ(a)) = a,

or b ∈ {a + εiei | εi = sign (di(φ(a)) − ai) 6= 0}, where ei is the ith
vector of the canonical basis of Rn.

Observe that each vertex in TGmay usually have several outgoing
edges, i.e. this is a non-deterministic graph. Although in general
many paths in TG do not represent any continuous trajectory, it
can be shown that every regular solution of (1) admits a well-
defined representative as an infinite path in TG, see Farcot (2006).
An important point is that the transitions between adjacent regular
domains are determined by the position of focal points.
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