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a b s t r a c t

We consider the problem of computing the root-mean-square (RMS) gain of switched linear systems.
We develop a new approach which is based on an attempt to characterize the “worst-case” switching
law (WCSL), that is, the switching law that yields the maximal possible gain. Our main result provides
a sufficient condition guaranteeing that the WCSL can be characterized explicitly using the differential
Riccati equations (DREs) corresponding to the linear subsystems. This condition automatically holds for
first-order SISO systems, so we obtain a complete solution to the RMS gain problem in this case.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the switched linear system

ẋ = Aσ(t)x + Bσ(t)u, y = Cσ(t)x, (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rk, and the switching signal σ : R+ →

{1, 2, . . . , l} is a piecewise constant function specifying, at each
time instant t, the index of the currently active system. Roughly
speaking, (1) models a system that can switch between the l linear
sub-systems:

ẋ = Aix + Biu, y = Cix, (2)

for i = 1, . . . , l. Note that we consider subsystems with no
direct input-to-output term. To avoid some technical difficulties,
we assume throughout that each linear subsystem is a minimal
realization.

Let S denote the set of all piecewise constant switching laws.
Many important problems in the analysis and design of switched
systems can be phrased as follows.
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Problem 1. Given S′
⊆ S and a property P of dynamic systems,

determinewhether the switched system (1) satisfies property P for
every σ ∈ S′.

For example, when u ≡ 0, P is the property of asymptotic stability
of the origin, and S′

= S, Problem 1 specializes into the following
problem.

Problem 2 (Liberzon, 2003; Shorten, Wirth, Mason, Wulff, & King,
2007). Is the switched system (1) asymptotically stable under
arbitrary switching laws?

Solving Problem 1 is difficult for two reasons. First, the set S′ is
usually huge, so exhaustively checking the system’s behavior for
each σ ∈ S′ is impossible. Second, it is entirely possible that each
of the subsystems satisfies property P, yet the switched system
admits a solution that does not satisfy property P. Thus, merely
checking the behaviors of the subsystems is not enough.

A general approach for addressing Problem 1 is based on
studying the “worst-case” scenario. We say that σ̃ ∈ S′ is the
worst-case switching law (WCSL) in S′, with respect to property P,
if the following condition holds: if the switched system satisfies
property P for σ̃, then it satisfies property P for any σ ∈ S′. Thus,
the analysis of property P under arbitrary switching signals from S′

can be reduced to analyzing the behavior of the switched system
for the specific switching signal σ̃.

The WCSL for Problem 2 (that is, the “most destabilizing”
switching law) can be characterized using variational principles
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(see the survey paperMargaliot (2006)). This idea originated in the
pioneering work of Pyatnitskii on the celebrated absolute stability
problem (Pyatnitskii, 1970, 1971) (see also Barabanov (2005),
Margaliot and Branicky (in press), Pyatnitskiy and Rapoport (1996)
and Rapoport (1996)). The basic idea is to embed the switched
system in amore general bilinear control system.1 Then, the “most
destabilizing” switching law can be characterized as the solution
to a suitable optimal control problem. For second-order systems,
this problem can be explicitly solved using the generalized first
integrals of the subsystems (Holcman&Margaliot, 2003;Margaliot
& Langholz, 2003).

In this paper, we use a similar approach for studying
the root-mean-square (RMS) gain problem. Our main result
shows that if a certain condition holds, then the WCSL can
be obtained by switching between the l differential Riccati
equations (DREs) corresponding to the l linear subsystems. This
condition automatically holds for first-order SISO systems, so we
obtain a complete solution to the RMS gain problem for this case.

We use standard notation. Vectors are denoted by boldface
letters, and the transpose of a vector v is denoted by v′. Matrices
are denoted by capital letters. If P,Q are two symmetric matrices,
then P > Q means that P − Q is positive-definite.

2. Preliminaries

In this section, we describe some known results on the RMS
gain of (non-switched) linear systems and the associated Riccati
equations.

Consider the linear system

ẋ = Ax + Bu, y = Cx, (3)

with (A, B) controllable and (A, C) observable. For T ∈ (0,+∞],
let L2,T denote the set of functions f (·) such that ‖f‖2,T :=(∫ T

0 f ′(t)f (t)dt
)1/2

< ∞. The RMS gain over [0, T] of (3) is defined
by g(T) := inf{γ ≥ 0 : ‖y‖2,T ≤ γ‖u‖2,T, ∀u ∈ L2,T}, where y is
the output of (3) corresponding to uwith x(0) = 0.

It iswell-known that g(∞) = ‖C(sI−A)−1B‖∞,where ‖Q(s)‖∞ :=

supRe(s)≥0 ‖Q(s)‖ is the H∞ norm of the transfer matrix Q(s) (Green
& Limebeer, 1995).

The RMS gain can also be computed by solving a suitable
Riccati equation (Zhou, Doyle, & Glover, 1996). This equation arises
because the Hamilton–Jacobi–Bellman equation, characterizing
a suitable dissipation function (van der Schaft, 1992), admits a
solution with a quadratic form for linear systems. Fix T ∈ (0,∞), a
symmetric matrix PT ∈ Rn×n, and consider the DRE:

Ṗ(t) = −Sγ(P(t)), P(T) = PT, (4)

where Sγ(P) := PA + A′P + C′C + γ−2PBB′P. Let I(PT) ⊆ [0, T] denote
the maximal time interval for which the solution P(t) exists.

Theorem 1 (Hespanha, 2002). g(T) = inf{γ ≥ 0 : I(0) = [0, T]}.

The next result, which is a special case of Abou-Kandil, Freiling,
Ionescu, and Jank (2003, Theorem. 4.1.8), provides a sufficient
condition for P(t) to be monotonic.

Theorem 2. If Ṗ(T) ≤ 0 then Ṗ(t) ≤ 0, for all t ∈ I(PT).

The algebraic Riccati equation (ARE) associated with the DRE (4) is:

Sγ(P) = 0. (5)

1 For a recent and comprehensive presentation of bilinear systems, see Elliott
(in press).

Theorem 3 (Hespanha, 2002). Consider the linear system (3), where
A is Hurwitz. Fix γ > 0 and denote R := γ−2BB′. If γ > g(∞)
then the ARE (5) admits symmetric and positive definite solutions P−,
P+

∈ Rn×n, referred to as the stabilizing and antistabilizing solutions,
respectively, such that A+RP− and−(A+RP+) are Hurwitz. Moreover,
P+ > P−.

It is possible to express the solution to the DRE (4) using P− and P+.

Theorem 4 (Hespanha, 2002). Suppose that the conditions of
Theorem 3 hold, and that PT −P+ is nonsingular. Define Q := A+RP+,
and

Λ(t) := eQ(t−T)
(
(PT − P+)−1

+ (P+
− P−)−1

)
eQ ′(t−T)

− (P+
− P−)−1, t ≤ T.

(1) The solution to (4) is P(t) = P+
+ (Λ(t))−1, for all t ∈ I,

where I ⊂ (−∞, T] is an interval on which Λ is nonsingular.
(2) If PT−P+ < 0, then P(t) exists for all t ≤ T and limt↓−∞ P(t) = P−.
(3) If PT − P+

6≤ 0, the solution P(t) has a finite escape time,2 that is,
there exist τ ∈ (−∞, T) and z ∈ Rn such that limt↓τ z′P(t)z =

+∞.

Theorem 4 implies in particular that g(T) ≤ g(∞) for all T. Indeed,
seeking a contradiction, suppose that there exists a time T such
that g(T) > g(∞). Fix γ such that g(∞) < γ < g(T). Theorem 3
implies that for this γ the ARE admits solutions P−, P+ > 0. Part (2)
of Theorem 4 implies that the solution P(t) to the DRE, with PT = 0,
exists for all t ≤ T. Theorem 1 now yields g(T) ≤ γ, which is a
contradiction.

3. RMS gain of switched systems

The RMS gain of (1), over some set of switching signals S′
⊆ S,

is defined by

gS′(T) := inf
γ≥0

{‖y‖2,T ≤ γ‖u‖2,T,∀u ∈ L2,T, ∀σ ∈ S′
},

where y is the solution to (1) corresponding to u,σ, with x(0) = 0.
This can be interpreted as the “worst-case” energy amplification
gain for the switched system, over all possible input and switching
signals in S′. Computing gS′(T) is an important open problem in
the design and analysis of switched systems (Hespanha, 2004). In
particular, calculating induced gains is the first step toward the
application of robust control techniques to switched systems (Lin,
Zhai, & Antsaklis, 2006; Zhai, Lin, Kim, Imae, & Kobayashi, 2005;
Zhao & Hill, 2005).

By definition, gS(T) ≥ max1≤i≤l{gi(T)}, where gi(T) is the
RMS gain of the ith linear subsystem. Consider the switched
system (1) with u ≡ 0. It is well-known that global asymptotic
stability of the individual linear subsystems is necessary, but not
sufficient for global asymptotic stability of the switched system for
every σ ∈ S (Liberzon, 2003). We assume from here on that the
switched system with u ≡ 0 is globally uniformly asymptotically
stable (GUAS), that is, there exist λ1,λ2 > 0 such that ‖x(t)‖ ≤

λ1‖x(0)‖e−λ2t , for all t ≥ 0, σ ∈ S, and x(0) ∈ Rn. In particular,
this implies of course that Ai, i = 1, . . . , l, are all Hurwitz. The next
example, adapted from Hespanha (2003), shows that even in this
case, the RMS gain of the switched system can be very different
from that of the subsystems.

2 See Abou-Kandil et al. (2003) and Bolzern, Colaneri, and De Nicolao (1997) for
some related considerations.
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