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a b s t r a c t

Based on a recent description of deadzone nonlinearities via local sector conditions, a new LMI
characterization is proposed to compute full-order continuous-time anti-windup controllers with pole
constraints. More precisely, an upper bound is introduced on the real part of the controller poles to
avoid slow dynamics, which often leads to poor time-domain performance. As is demonstrated in a short
applicative part, the introduction of such a bound allows us to efficiently handle the trade-off between
stability domain enlargement and time-domain response relevance.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As is observed in Grimm et al. (2003), one of the most challeng-
ing problems in nonlinear control is certainly to design high per-
formance control laws for linear systems with input saturations.
Numerous methods now exist to handle such nonlinearities, but
the most popular and pragmatic one remains the anti-windup ap-
proach, which has received much attention in the past decade. Let
us notably cite Kothare, Campo, Morari, and Nett (1994), where a
unifying framework inspired by the famous standard forms from
robust control theory is developed. More recently, based on the
LFT/LPV framework, extended anti-windup schemes were intro-
duced in Lu, Wu, and Kim (2005), Saeki and Wada (2002), Turner
and Postlethwaite (2004) andWu and Soto (2004). In these contri-
butions, the saturations are viewed as sector nonlinearities and the
anti-windup control design issue is recast into a convex optimiza-
tion problemunder LMI constraints. Following a similar path, alter-
native techniques using a less conservative representation of the
saturation function based on a modified sector condition (Gomes
da Silva Jr. & Tarbouriech, 2005) were then proposed to compute
either static (Biannic, Tarbouriech, & Farret, 2006; Gomes da Silva
Jr. & Tarbouriech, 2005) or dynamic (Hu, Teel, & Zaccarian, 2005;
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Kiyama & Sawada, 2004; Tarbouriech, Gomes da Silva, & Bender,
2006) anti-windup controllers. These techniques are further ex-
ploited throughout this note to compute continuous-time dynamic
anti-windup controllers, which offer more flexibility compared to
static gains. Interestingly, the problem is shown to be convexwhen
the order of the anti-windup compensator coincides with that of
the nominal closed-loop plant. However, from a practical point
of view, it is usually observed that such full-order controllers ex-
hibit slow dynamics, which remains visible on the plant outputs
even when the saturations are no longer active. To cope with this
problem and improve the time-domain performance of saturated
plants, a new convex characterization is proposed in this paper
to compute dynamically-constrained anti-windup compensators.
More precisely, an upper bound is introduced on the real part of
their poles.

The note is organized as follows. Section 2 introduces some
useful notation and backgrounds. The main technical result is
then stated and proved in Section 3. A short application is finally
proposed in Section 4, which clearly illustrates the interest of
constraining the poles of the anti-windup controller.

2. Notation and backgrounds

The considered anti-windup design problem is illustrated in
Fig. 1. M(s) is a strictly proper linear plant in feedback-loop with
normalized deadzone nonlinearities Φ. Note that Φ(z) = z −

Ψ(z), where Ψ denotes the standard saturation operator. It can be
assumed without loss of generality that M(s) is stable, since it is
composed of both the plant to be controlled (including actuators)
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Fig. 1. A standard form for anti-windup design.

and the nominal controller. Let this closed-loop plant be described
by:

M(s) :

{
ξ̇ = Aξ + Bφw + Bav, ξ ∈ RnM

z = Cφξ ∈ Rm.
(1)

The aim of this paper is to compute a dynamic anti-windup
compensator J(s) = CJ(sInJ − AJ)

−1BJ + DJ to enlarge the stability
domain of the nonlinear interconnection depicted on Fig. 1, whose
equations are obtained as follows (with n = nM + nJ):

ẋ =

[
A BaCJ

0 AJ

]
x +

[
Bφ + BaDJ

BJ

]
w

z =
[
Cφ 0

]
x, x ∈ Rn

w = Φ(z).

(2)

The main result stated in Section 3 is based on the following
theorem, which is a straightforward adaptation of Biannic et al.
(2006) and Gomes da Silva Jr. and Tarbouriech (2005). Note that
for compactness the symmetric terms in thematrix inequalities are
replaced by ? in the remaining of the paper.

Theorem 2.1 (Dynamic Anti-Windup Synthesis). Let a positive scalar
ρ and a polyhedral set X = co({χ1, . . . ,χq}) ⊂ Rn where co(.)
denotes the convex hull and χT

i = [χT
i 0nM ] be given. If there exist

a symmetric matrix Q ∈ Rn×n, a diagonal matrix S ∈ Rm×m, a full
rectangular matrix Z ∈ Rm×n and matrices AJ, BJ, CJ,DJ of appropriate
dimensions such that the following LMI conditions hold:(

Q ?

ρχT
i 1

)
> 0, i = 1 . . . q (3)


[
A BaCJ

0 AJ

]
Q 0

S
[
Bφ + BaDJ

BJ

]T
− Z −S

+ (?) < 0 (4)

(
Q ?

Zi +
[
Cφi 0

]
Q 1

)
> 0, i = 1 . . .m (5)

where Zi and Cφi denote the ith rows of Z and Cφ respectively, then the
ellipsoid:

EP = {x ∈ Rn, xTPx ≤ 1} ⊃ ρX (6)

where P = Q−1, defines a domain of asymptotic stability for the
nonlinear interconnection (2).

Note that the order of the anti-windup controller is free, but the
problem is not convex unless AJ and CJ are fixed.

3. Main result

With the notation of Theorem 2.1 in mind, the main result of
the paper can now be stated.

Theorem 3.1 (Full-order Anti-Windup Synthesis with Pole Con-
straints). Let two positive scalars λ,ρ and a polyhedral set X as de-
fined above be given. If there exist symmetric matrices X, Y ∈ RnM×nM ,
a diagonalmatrix S ∈ Rm×m and a full rectangularmatrixW = [U V] ∈

Rm×(nM+nM) such that the following LMI conditions hold:

X > ρ2χiχ
T
i , i = 1 . . . q (7)(

NT
a (AY + YAT)Na ?

(SBTφ − V)Na −2S

)
< 0 (8)

(
AX + XAT

− 2λX ?
2λY −2λY

)
< 0 (9)

X ? ?
X Y ?
Ui Vi + CφiY 1

 > 0, i = 1 . . .m (10)

where Na denotes any basis of the null-space of BTa , while Ui, Vi and Cφi

are the ith rows of U, V and Cφ respectively, then there exist a dynamic
anti-windup controller J(s) whose poles λ1,λ2, . . . ,λnM satisfy:

R (λj) < −λ, j = 1 . . . nM (11)

and a positive definite matrix P ∈ Rn×n such that the ellipsoid:

EP =

{
x ∈ Rn, xTPx ≤ 1

}
⊃ ρX (12)

defines a domain of asymptotic stability for the nonlinear intercon-
nection (2).

Proof. The poles λj of the anti-windup controller J(s) satisfy
R(λj) < −λ iff there exists a positive definite matrix H ∈ RnM×nM

such that:

AJH + HAT
J + 2λH < 0. (13)

With reference to Theorem 2.1, let us first partition the matrices Q
and P = Q−1 as1:

Q =

(
Y NT

N F

)
, P =

(
X−1 MT

M E

)
(15)

where X, Y ∈ RnM×nM . Choosing H = F, it is readily checked that the
inequality:
[
A BaCJ

0 AJ

]
Q +

[
0 0
0 λF

]
0

S
[
Bφ + BaDJ

BJ

]T
− Z −S

+ (?) < 0 (16)

enforces both (4) and (13). Then, gathering the anti-windup state

matrices in Ω =

(
AJ BJ
CJ DJ

)
and partitioning Z = (V Ũ), where

V, Ũ ∈ Rm×nM , inequality (16) becomes:

Θ + UTΩV + VTΩTU < 0 (17)

1 Inequality (10) implies
(
X X
X Y

)
> 0, i.e. X−1 > 0, Y > 0 and X−1Y > I,

which means that the conditions of the completion lemma (as stated in Packard,
Zhou, Pandey, and Becker (1991)) are strictly verified here. As a result, the partition
(15) is valid. Moreover, following Gahinet and Apkarian (1994), the matrix Q can be
obtained as:

Q =

(
Y I
N 0

)(
I X−1

0 M

)−1
(14)

where the nonsingular square matrices M and N are the solutions of MTN = I −

X−1Y < 0.
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