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a b s t r a c t

The power attenuation dynamics for long-term log-normal fading channels in wireless communication
systems is modeled by a stochastic differential equation. Estimators for the model parameters based
on sample covariances from data corrupted by discrete-time measurement noise are given. It is shown
that the estimators are consistent, and variance expressions are derived and compared numerically to
the Cramér–Rao bound. The estimation of the model parameters allows for the design of power control
algorithms.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In wireless communication systems, long-term (or large-scale)
fading is caused by shadowing effects due to buildings and
moving obstacles. The power attenuation dynamics for long-term
log-normal fading channels can be described by the stochastic
differential equation

dx(t) = −a0(x(t)+ b0)dt + dw(t), (1)

see Charalambous and Menemenlis (1999), Huang, Caines, and
Malhamé (2004) andMossberg, Larsson andMossberg (2006c). The
equation is a mean reverting Ornstein–Uhlenbeck process (Kloe-
den & Platen, 1992), where x(t) denotes the attenuation at time t
of the power of a mobile user in dB, a0 > 0 is the speed of a long-
term adjustment of x(t) towards the mean −b0, and dw(t) is the
increment of aWiener processw(t). The increment dw(t) has vari-
ance σ 20 and the Wiener process w(t) is independent of the Gaus-
sian random variable x(0). Furthermore, x(0) is assumed to have
mean−b0 and intensity σ 20 /(2a0). The actual signal attenuation is
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given by ex(t) and the received signal s̄(t) of the mobile at the base
station is given by

s̄(t) =
√
p(t)ecx(t)s(t), (2)

where p(t) is the transmitted power of the mobile, s(t) is the
signal sent by the mobile, and c = − ln(10)/20. This paper deals
with the problem of finding estimators of the model parameters
from irregularly sampled data corrupted by measurement noise.
One important motivation for this is the design of power control
algorithms, see, e.g., Huang et al. (2004) and Olama, Djouadi, and
Charalambous (2007) for further details. See also Charalambous
and Menemenlis (1999, 2001) for further examples of modeling
in communications using the mean reverting Ornstein–Uhlenbeck
process. Description and identification of stochastic systems is a
well-established subject area, see, e.g., Caines (1988), Ljung (1999)
and Söderström and Stoica (1989) and the references therein, with
applications in many different fields. This paper is an example of a
work on continuous-time stochastic systems, a topic that is treated
in the recent book (Garnier & Wang, 2008).
It is assumed that the irregularly sampled data

ψ =
[
ψ(t1) · · · ψ(tN̄)

]T (3)

are available, where

ψ(tk) = x(tk)+ e(tk), (4)

with e(tk) being zero mean discrete-time Gaussian white noise
of variance λ20. Fast and accurate estimators, robust to the
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measurement noise e(tk), of the parameters

θ0 =
[
a0 b0 σ 20 λ20

]T (5)

from the irregularly sampled dataψ are presented in the paper. The
estimators, except the one for b0, are based on sample covariances.
A preliminary version (without any analysis) of this paper can
be found in Mossberg, Larsson and Mossberg (2006b). Examples
of other estimators for long-term fading channels found in the
literature are the least squares based estimators in Mossberg et al.
(2006c), the instrumental variable based estimators in Mossberg,
Larsson and Mossberg (2006a), and the estimators based on the
expectation maximization algorithm in Olama, Jaladhi, Djouadi,
and Charalambous (2007).
In order to get a well-posed problem, we make the following

assumptions and introduce the following notations.

1. In what follows, hk = tk+1 − tk, 0 < h < hk 6 h̄, for h̄
sufficiently bounded, and let γk(µ) = tk+µ − tk.

2. The sequence of sampling intervals, {hk}, is independent and
identically distributed (i.i.d.) with an associated probability
density function p(hk). Moreover, {hk} is independent of the
process x(t).

3. The notation E{·} means expectation with respect to the
process, given a certain sampling scheme with hk bounded as
described above.

4. Furthermore, Eh{·} means expectation with respect to the
sampling.

5. The notation Ep,h{·}means expectationwith respect to both the
process and the sampling.

6. Throughout the paper, for ease of notation,N will always denote
the largest possible value of the sample index that can be used
for a given case.

The outline of the paper is as follows. The proposed estimators
are described in Section 2. Consistency of the estimators is shown
in Section 3, and a variance analysis is carried out in Section 4.
A numerical study is presented in Section 5, and conclusions are
drawn in Section 6.

2. The estimators

In this section, estimators of the parameters in θ0 are proposed.
We start by estimating b0 which is done straightforwardly as
follows.

Proposition 1. Since E{x(t)} = −b0, a natural estimator of b0 is
given as

b̂ = −
1
N

N∑
k=1

ψ(tk). (6)

In order to find estimators for a0, σ 20 , and λ
2
0, we first note that

the system (1) can be rewritten as

dy(t) = −a0y(t)dt + dw(t), (7)
x(t) = y(t)− b0. (8)

It is readily verified, for example by solving the Yule–Walker
equations, that y(t) in (7) has the covariance function

ry(τ ) = E{y(t + τ)y(t)} =
σ 20

2a0
e−a0|τ |, (9)

since E{y(t)} = 0. Then, since E{x(t)} = −b0, it follows from (8)
that

rx(τ ) = E{(x(t + τ)+ b0)(x(t)+ b0)} = ry(τ ), (10)

so

rx
(
γk(µ)

)
= E{(x(tk+µ)+ b0)(x(tk)+ b0)}

= ry
(
γk(µ)

)
. (11)

Furthermore,

rψ
(
γk(µ)

)
= E{(ψ(tk+µ)+ b0)(ψ(tk)+ b0)}
= E{(x(tk+µ)+ e(tk+µ)+ b0)(x(tk)+ e(tk)+ b0)}

= rx
(
γk(µ)

)
+ λ20δµ,0, (12)

where δµ,0 is the Kronecker delta.
Introduce

r̂ψ (µ) =
1
N

N∑
k=1

{(ψ(tk+µ)+ b̂)(ψ(tk)+ b̂)}. (13)

Moreover, let

r̂ =
[
r̂ψ (1) · · · r̂ψ (m)

]T
, (14)

fk(a) =
[
e−aγk(1) · · · e−aγk(m)

]T
, (15)

f̄(a) =
1
N

N∑
k=1

fk(a), (16)

`(a) =
f̄(a)
2a
, (17)

wherem > 1. Define

ϑ =
[
a σ 2

]
(18)

and

V (ϑ) = ‖r̂− `(a)σ 2‖22 (19)

from which an estimate ϑ̂ of

ϑ0 =
[
a0 σ 20

]
(20)

is given as

ϑ̂ = argmin
ϑ
V (ϑ). (21)

From (19), the estimate

σ̂ 2(a) =
(
`T(a)`(a)

)−1
`T(a)r̂ (22)

is given as a function of a.

Proposition 2. By inserting (22) in (19), an estimate of a0 is
obtained as

â = argmin
a
‖r̂− `(a)σ̂ 2(a)‖22

= argmin
a
‖
(
I− P(a)

)
r̂‖22

= argmax
a
W (a), (23)

where

P(a) = `(a)
(
`T(a)`(a)

)−1
`T(a), (24)

W (a) = ‖P(a)r̂‖22, (25)

where the projectionmatrix P(a) has the properties P(a) = PT(a) and
P(a) = P2(a).

Proposition 3. An estimate of σ 20 is found by inserting (23) in (22).
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