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a b s t r a c t

An output-feedback model-reference variable structure controller based on a high-gain observer (HGO)
is proposed and analyzed. For single-input–single-output (SISO) linear plants with relative degree greater
than one, the control law is generated using the HGO signals only to drive the sign function of the variable
structure control component while the sign function gain, also called modulation, as well as the other
components of the control signal are generated using signals from state variable filters which do not
require high gain and are free of peaking. This scheme achieves global exponential stability with respect
to a small residual set and does not generate peaking in the control signal.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with the design of output feedback
control laws for uncertain linear systems using variable structure
control (VSC) and a high-gain observer (HGO). Here, the generation
of large fast transients in the control signal, known as peaking
phenomena, is avoided while preserving global stability.
VSC is an efficient tool to design controllers for plants under

significant uncertainty conditions. Owing to the practical difficulty
ofmeasuring all states, as required in earlyworks, output-feedback
strategies for VSC were proposed (e.g. Emelyanov, Korovin,
Nersisian, and Nisenzon (1992), Esfandiari and Khalil (1992) and
Walcott and Żak (1988)). Recently, higher order sliding modes
for plants of arbitrary relative degree have been also considered
by Levant (1998) using robust exact differentiators. Theoretically,
controllers based on such differentiators may lead to exact output
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tracking. However, stability and/or convergence of the overall
control system was guaranteed only locally.
While it is well known from the seminal paper (Bondarev,

Bondarev, Kostyleva, & Utkin, 1985) that output feedback sliding
mode control is possible with the use of asymptotic observers, a
good knowledge of the plantmodel is needed. For uncertain plants,
a solution for state estimation is the HGO, which is robust tomodel
uncertainties (Emelyanov et al., 1992; Esfandiari & Khalil, 1992). A
drawback of the HGO is the peaking phenomenon, which may be
destabilizing and even provoke finite-time escape in closed-loop
nonlinear systems (Atassi & Khalil, 2000; Sussmann & Kokotović,
1991).
The relevance of peaking elimination is explained as follows.

If the system satisfies a global Lipschitz condition (e.g., if the
system is linear), global asymptotic stability can be obtained
with HGOs (Busawon, El Assoudi, & Hammouri, 1993; Gauthier,
Hammouri, & Othman, 1992), at the expense of unacceptable
transient responses (Atassi & Khalil, 2000). In linear plants with
actuator constraints, peaking can lead to saturation of the control
signal and, consequently, to performance degradation, as pointed
out by Méndez-Acosta, Femat, and Campos-Delgado (2004).
Moreover, peaking may cause undesirable mechanical wear and
energy loss. For example, in flow control systems operating at
high flow rates, large peaks in the control signal can abruptly
close a valve, causing water hammer which can severely damage
pipes, valves and other mechanical parts. These facts are well
known in industrial process control when derivative action is used.
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Consequently, peaking avoidance has motivated the development
of several control design remedies (Li, Ang, & Chong, 2006).
Several previous works give some alternatives for peaking

alleviation, for instance: (1) The amplitude of the control signal can
be globally bounded through saturation (Oh & Khalil, 1995, 1997).
This may restrict stability to become local or semi-global and
precludes global stabilization of unstable linear systems; (2) The
HGO free of peaking proposed by Chitour (2002) is based on a time-
varying observer gain. However, this algorithm may fail in actual
systems since disturbances may excite peaking when the observer
gain is large. (3) The semi-high gain observer (Lu & Spurgeon, 1998),
which is a HGO with a non-conservative value for the observer
gain, is computed such that closed-loop stability is guaranteed.
However, this procedure, which was developed for stabilization
purposes, seems inadequate for tracking applications where the
observer gain must be large enough to keep the residual output
error small.
This paper presents an output-feedback model-reference

variable structure controller that uses simultaneously a HGO and
state variable filters to implement the control law. The main
contributions are: (i) To introduce a HGO-based controller for
uncertain linear plants which is free of peaking and yet guarantees
global exponential stability with respect to a small residual set. To
the best of our knowledge, such a result is original. The importance
of the absence of peaking is illustrated by experimental results in
Section 6.2. (ii) To offer a significantly more simple controller than
the earlier variable structure model-reference robust controller
(VS-MRRC)1 (Hsu, Araújo, & Costa, 1994; Hsu, Lizarralde, & Araújo,
1997). The VS-MRRC also solves the output-feedback tracking
control problem, however the number of required state variables
significantly exceeds the HGO by 2(n + 1)(n∗ − 1) − 1, where n
is the order and n∗ is the relative degree of the plant. For example,
if n = 5 and n∗ = 3 the HGO-based controller requires 14 state
variables, while the VS-MRRC requires 37 state variables. This is
due to themore involved structure of the VS-MRRCwhich requires
several filters for the computation of the gains of n∗ modulated
relays, instead of a single modulated relay in the new HGO-based
controller. (iii) The HGO structure allows a more natural extension
to nonlinear plants with nonlinearities depending on unmeasured
states (e.g. Oliveira, Peixoto, & Hsu, 2008). Such an extension is not
trivial for the VS-MRRC.
Notations: The L∞e norm of the signal x(t) ∈ Rn is defined as
‖xt,t0‖∞ := supt0≤τ≤t ‖x(τ )‖. A mixed time-domain and Laplace
transform domain is adopted, i. e., s denotes either the Laplace
variable or the differential operator, according to the context. The
output signal y of a linear time-invariant system with transfer
function matrix H(s) and input u is denoted by H(s)u. The time-
domain convolution is denoted by h(t) ∗ u(t).

2. Problem statement and preliminaries

Let a linear, time-invariant, observable and controllable plant
be described by the input–output model

y = G(s)[u+ d(t)], G(s) = kp
Np(s)
Dp(s)

, (1)

where u ∈ R is the input, y ∈ R is the output, d ∈ R is
an unmeasured input disturbance, kp ∈ R is the high frequency
gain, Np(s) and Dp(s) are monic polynomials. The following
assumptions regarding the plant are usual in model-reference
adaptive control (Ioannou & Sun, 1996): (A1) G(s) is minimum

1 Originally, it was named variable structure model-reference adaptive controller
(VS-MRAC) due to its close relation with MRAC.

phase; (A2) G(s) is strictly proper; (A3) the order of the system (n)
is known; (A4) the relative degree of G(s), n∗, is known; (A5) the
sign of kp is known and kp > 0 for simplicity.
Two additional assumptions are needed in the design of the

modulation function of the control law: (A6) the disturbance d(t) is
piecewise continuous and a bound d̄(t) is known such that |d(t)| ≤
d̄(t) ≤ d̄sup < +∞, ∀t ≥ 0; (A7) the parameters of G(s) are
uncertain but the coefficients of Dp(s) and Np(s) belong to known
bounded sets and, a bound kp is known such that 0 < kp ≤ kp.
To simplify the analysis and design of the controller, the

reference model is defined by

yM = WM(s)r, WM(s) =
kM

L(s) (s+ γ )
, (2)

where yM(t) is the output signal, r(t) is a piecewise continuous and
uniformly bounded reference signal, kM > 0 is the high frequency
gain of the model, L(s) is a monic Hurwitz polynomial of degree
N := n∗ − 1 and γ > 0.
The objective is to design an output-feedback controller to

achieve asymptotic convergence of the output error

e(t) := y(t)− yM(t) (3)

to zero, or to some small residual neighborhood of zero.
If the plant and the disturbance d(t) are perfectly known, a

control law which achieves matching between the closed-loop
transfer function and WM(s) is given by (Cunha, Hsu, Costa, &
Lizarralde, 2003)

u∗ = θ∗Tω − wd(t) ∗ d(t), (4)

where wd(t) is the impulse response of a system with trans-
fer function Wd(s) = 1 − θ∗T1 A(s)/Λ(s), where A(s) =
[sn−2, sn−3, . . . , s, 1]T, and Λ(s) is an arbitrary monic Hurwitz
polynomial of degree n − 1. The signal wd(t) ∗ d(t) cancels the
input disturbance d(t). The parameter vector is given by θ∗T =[
θ∗T1 , θ

∗T
2 , θ

∗

3 , θ
∗

4

]
, with θ∗1 , θ

∗

2 ∈ R(n−1), θ∗3 , θ
∗

4 ∈ R and the re-
gressor vector is ω =

[
ωT1, ω

T
2, y, r

]T with state variable filters:
ω1 =

A(s)
Λ(s)

u, ω2 =
A(s)
Λ(s)

y. (5)

The matching parameters θ∗ can be computed from θ∗4 = k
−1
p kM

and a Diophantine equation (Ioannou & Sun, 1996, eq. (6.3.13)).
Consider the system state X := [xTp, ω

T
1, ω

T
2]
T, where xp ∈ Rn

is the plant state, and a non-minimal realization {Ac, Bc, Co} of
WM(s) with state vector XM and Ac Hurwitz. Then, the state error
Xe := X − XM and the output error e(t) satisfy

Ẋe = AcXe + Bck
[
u− θ∗Tω + wd(t) ∗ d(t)

]
, (6)

e = CoXe, (7)

where k := (θ∗4 )
−1

= k−1M kp (Hsu et al., 1994). For
the HGO design and overall stability analysis, a reduced order
error model is advantageous. To this end, consider a Kalman
decomposition (Kailath, 1980, pp. 132–134) for the system (6)
and (7) with partial observable states xoc (controllable) and xoc̄
(uncontrollable) satisfying:

ẋoc = A11xoc + A12xoc̄ + B1k
[
u− u∗

]
, (8)

ẋoc̄ = A22xoc̄, (9)
e = C1xoc + C2xoc̄, (10)

where {A11, B1, C1} is a minimal realization of WM(s). The
characteristic polynomial of A11 is DM(s) = L(s)(s + γ ) =

sn
∗

+ an∗−1sn
∗
−1
+ · · · + a1s + a0. Noting that C1Ai−111 B1 = 0
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