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a b s t r a c t

The paper describes a simplified dynamic model of a greenhouse tomato crop, and the optimal control
problem related to the seasonal benefit of the grower. A HJB formalism is used and the explicit form of
the Krotov–Bellman function is obtained for different growth stages. Simulation results are shown.
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1. Introduction

The greenhouse horticulture sector is growing fast and
is attaining greater economic and social importance. Many
efforts have been made to develop advanced computerized
greenhouse climate control. In particular, different interesting and
important optimal control approaches have been proposed, see
e.g. Aikman (1996), Ioslovich and Seginer (1995, 1998), Ioslovich
and Tchamitchian (1998), Pucheta, Schugurensky, Fullana, Patino,
andKuchen (2006), Seginer (1989), Seginer andMcClendon (1992),
Seginer and Ioslovich (1998), Tchamitchian and Ioslovich (1998),
Van Straten, Challa, and Buwalda (2000), Van Henten (1994)
and Van Straten, van Willigenburg, and Tap (2002). However,
optimal control concepts and nonlinear dynamic programming
(NDP) in particular have almost not been used in practice, due
to the complexity of implementation. This paper is an attempt
to alleviate the complexity problem. Optimal control theory, see
Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko (1962),
makes it possible to ‘‘transform’’ a known weather sequence
over the growing season to an optimal control sequence, by the
simultaneous determination of state and costate variables, and
replace the seasonal optimization by instantaneous optimization
of the Hamiltonian function at each time moment. However, in
addition to numerical difficulties, the details of the weather are
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hard to predict. Here we do not assume a detailed and correct
weather forecast, but take an approach based on the so-called
climate index, (Ioslovich & Gutman, 2005), and on a simplified
crop growth model. Then the Krotov version of nonlinear dynamic
programming (NDP), Krotov (1996), is used off-line, and even
before the growing season, to determine the scalar adjusted costate,
Seginer and Ioslovich (1998), which may be interpreted as the
optimal control ‘‘intensity’’ [$/kg accumulated dry matter]. By
knowing the value of the adjusted costate, the current weather
measurement determines the instantaneous optimal control in
an on-line optimization procedure, (Ioslovich & Seginer, 1998).
Clearly, such a procedure is conceptually simple for the grower,
and numerically tractable. The aim of this paper is to determine
the optimal control intensity based on the three stage crop
growth model and using the HJB formalism as the sufficient
conditions of optimality. The paper is organized as follows:
Section 2 contains the description of the model and the statement
of the problem. Section 3 is devoted to a short description of the
Krotov–Bellman sufficient conditions, (Krotov, 1996). Section 4
gives the description of the explicit Krotov–Bellman functions
for the three growth stages. Simulation results are reported in
Section 5, and the concluding remarks are found in Section 6.

2. Description of the simplified model and statement of the
problem

The growth of the greenhouse tomato plant is described by
two state variables which have different differential equations
during different growth stages, (Ioslovich, Gutman, & Linker, 2007).
These stages are: vegetative, vegetative–reproductive (mixed), and
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reproductive. The partition factor that determines the allocation of
the accumulated dry matter to vegetative and reproductive parts
of the plant is different in each stage. The model, MBM-A, was
calibrated against the data from simulations of the multivariable
detailed TOMGRO model, (Dayan et al., 1993). The state variables
of the MBM-A are x and y with given initial conditions x(0) =
x0, y(0) = y0 = 0. Here, x [kg d.m./m2] is the accumulated
vegetative dry mass, d.m., including green leaves, stems and green
fruits. The variable y [kg d.m. /m2] corresponds to the harvestable
red fruits (economic end-product). x0 > 0 stands for the seedlings
obtained from the nursery. The steady state greenhouse model in
Hwang and Jones (1994) gives the functionM(t,U) [kg/(day∗m2)],
that represents the daily rate of dry weight accumulation due to
net photosynthesis per unit of sunlit area, and depends on the
current outdoor climate inputs at the moment t , and the vector of
control variables U , including greenhouse heating, ventilation and
CO2 enrichment. The dimensionless coefficient krv represents the
ratio between values of the photosynthesis radiation effectiveness
of the reproductive and the vegetative organs. The dimensionless
function f (x) may be loosely defined as the ‘‘light interception
factor’’, i.e. the fraction of light intercepted by the canopy. It can be
approximately expressed as a function of the vegetative dry mass,
namely,

f (x) = 1− exp(−βx). (1)

The determination of the switching time between growth stages is
done in terms of τ , the effective degree-days, EDD. The value of τ is
a time integral of ET [◦C], where ET is the effective temperature
of the greenhouse crop canopy, i.e. the temperature above a given
threshold Tl,

ET = max{0, (T − Tl)}. (2)

The time t = tf of the end of the season is fixed. The value
S(t,U) [kg d.m./(day m2)] is equal to ETσ−1, where σ =

103 [day (◦C m2)/(kg d.m.)] is a conversion factor due to the given
units. Thus S is the effective temperature converted to the units of
daily dry matter accumulation. For τ we have the equation

dτ
dt
= S(t,U)σ . (3)

Similarly to Ioslovich and Gutman (2005) we assume that the
following constant ratio holds,

M(t,U)/S(t,U) = Kc . (4)

For open field crops the dimensionless coefficient Kc is a climate
index that can be calculated from local climate data history. The
mean daily temperature is strongly correlated with themean daily
light, and light is strongly correlated with photosynthesis. There-
fore, a strong correlation between temperature andphotosynthesis
can be assumed, e.g. approximately as in (4). Thus a coefficient Kc ,
the climate index, is an integrated value to characterize the climate.
For greenhouse crops this index corresponds to the source/sink ac-
tivity balance constraint, see Tchamitchian and Ioslovich (1998).
The growth is said to be ‘balanced’ if the photosynthetic source
strength of carbon balances the sink strength of the effectively
growing crop. In our greenhouse tomato case, the coefficientKc can
be extracted from TOMGRO, where this proportionality is clearly
observed during balanced growth. The vegetative period is de-
scribed by the equations

dx
dt
= M(t,U)f (x),

dy
dt
= 0. (5)

This period starts at t = t0 and ends at τ = τ1. However, using (3),
(5) and (4) one can see that

dx
dτ
= f (x)Kcσ . (6)

Thus it is easy to calculate the value x(τ = τ1) = x1
which is independent of U(t). Therefore the end of the vegetative
period is determined by the moment when x(t) = x1. In the
intermediate (mixed) vegetative–reproductive stage the rate of
growth of the red fruits is limited by the potential sink demand
of the reproductive organs, and the equations of the process are

dx
dt
= M(t,U)(1− α)f (x),

dy
dt
= M(t,U)g(y)/Kc . (7)

First Eq. (7) is calibrated such that the vegetative dry matter at the
end of the mixed period x(τ = τ2) is equal to the value found in
TOMGRO. Second Eq. (7) is equivalent to
dy/dt = S(t,U)g(y). (8)
Similarly to f (x), g(y) is assumed to be a smooth increasing
dimensionless function,
g(y) = ε + ν[1− exp(−γ y)].
The coefficients ε, ν, α, all dimensionless, and γ [m2/kg d.m.], are
extracted from TOMGRO simulations. The end of the mixed period
at τ = τ2, found from TOMGRO, can be restated as the condition
x = x2, where x2 does not depend on the control sequence leading
to it. From (7), (3) and (8) we have

dx
dτ
= (1− α)f (x)Kc,

dy
dτ
= g(y)σ . (9)

We recall that the values x(τ1) = x1 and y(τ1) = y1 = 0 are
already known, and notice from (9) that the values x2 = x(τ2)
and y(τ2) = y2 can be easily determined. It will be shown below
that x2(τ2) = x(tf ), thus the value x2 is a boundary condition
for the variable x at the final time tf . During the third period
(the reproductive stage) all the assimilates are directed to the
reproductive organs, and the state equations become

dx
dt
= 0,

dy
dt
= M(t,U)f (x)η. (10)

Here the notation used is
η = krvθξ . (11)
The dimensionless constant value θ represents the loss coefficient
of the dry weight allocated to fruits, due to different factors
such as fruit abortions, etc. The overall fruit loss coefficient η
for the reproductive stage is a product of krv, θ , and ξ , where
the additional coefficient ξ < 1 is added to reflect the fact
that some photosynthetic assimilates are used to compensate for
dying leaves, etc. With this approximation we see that x remains
constant, while y is growing linearly. The reproductive period ends
at the given final time t = tf . The final value x(tf ) = x2 is a fixed
boundary condition at the end of the trajectory. The performance
criterion (the objective of the optimal control problem) is

Q = cry(tf )−
∫ tf

to
q(t,U)dt → max (12)

which represents the maximization of the grower’s monetary
net income, i.e. the difference between the sales price of the
harvestable (red) fruits and the cost of the greenhouse operation,∫ tf
to
q(t,U)dt . Here cr [$/(kg d.m.)] is the unit price of red fruits.

The cost q(t,U) is determined as
q(t,U) = chh+ cCC, (13)
where h [J/day/m2] is the heating, and C [kg CO2/day/m2] is the
CO2 enrichment control fluxes, respectively, and ch [$/J/m2], cC
[$/kg/m2] are the corresponding unit prices. The objective function
(12) contains a function of the final state, and an integral part; thus
it is a so-called Bolza problem, see Goldstine (1980). Due to the
three different growth periods, one may define different regions
in the state space (phase plane) which characterize the solution of
the differential equations (5), (7) and (10), illustrated in Fig. 1. The
regions are:



Download	English	Version:

https://daneshyari.com/en/article/697310

Download	Persian	Version:

https://daneshyari.com/article/697310

Daneshyari.com

https://daneshyari.com/en/article/697310
https://daneshyari.com/article/697310
https://daneshyari.com/

