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a b s t r a c t

This paper deals with the finite-time stability problem for continuous-time linear time-varying systems
with finite jumps. This class of systems arises in many practical applications and includes, as particular
cases, impulsive systems and sampled-data control systems. The paper provides a necessary and sufficient
condition for finite-time stability, requiring a test on the state transition matrix of the system under
consideration, and a sufficient condition involving two coupled differential–difference linear matrix
inequalities. The sufficient condition turns out to be more efficient from the computational point of view.
Some examples illustrate the effectiveness of the proposed approach.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of finite-time stability (FTS) dates back to the
fifties,when itwas introduced in theRussian literature (Kamenkov,
1953; Lebedev, 1954a,b); later during the sixties this concept
appeared in the western control literature (Dorato, 1961; Weiss &
Infante, 1967). A system is said to be finite-time stable if, given a
bound on the initial condition, its state does not exceed a certain
threshold during a specified time interval. It is important to recall
that FTS and Lyapunov Asymptotic Stability (LAS) are independent
concepts; indeed a system can be FTS but not LAS, and vice versa.
While LAS deals with the behavior of a systemwithin a sufficiently
long (in principle infinite) time interval, FTS is a more practical
concept, useful to study the behavior of the system within a
finite (possibly short) interval, and therefore it finds application
whenever it is desired that the state variables do not exceed a given
threshold (for example to avoid saturations or the excitation of
nonlinear dynamics) during the transients.
In Amato, Ariola, and Cosentino (2006) and Amato, Ariola,

and Dorato (2001) a sufficient condition for FTS and finite-time
stabilization of continuous-time linear time-invariant systemswas
provided, by using an approach based on the Lyapunov function
theory; such a condition requires the solution of a feasibility
problem involving Linear Matrix Inequalities (LMIs). A different
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approach, which is reminiscent of optimal control techniques
and is also applicable to linear time-varying systems, has been
proposed in Amato, Ariola, Carbone, and Cosentino (2006) and
Amato, Ariola, and Cosentino (2005). In the time-invariant case, the
main result of Amato et al. (2006) turns out to be less conservative
than the condition provided in Amato et al. (2001), but it is
computationally more demanding since it involves the solution of
a Differential Linear Matrix Inequality (DLMI).
In this paper we consider the class of linear time-varying

systems with finite state jumps. The concept of linear systems
with jumps was firstly proposed in Sun, Nagpal, and Khargonekar
(1993). Roughly speaking, such systems are linear continuous-
time systems whose state undergoes finite jump discontinuities
at discrete instants of time. Obviously, the class of linear systems
with jumps contains continuous-time linear systems, but, as a
matter of fact, it captures many other cases of practical interest in
engineering applications, e.g. impulsive (Yang, 2001), hybrid and
sampled-data control systems. In particular (see Sun et al. (1993)),
systems with jumps were introduced as a suitable framework
for representing closed-loop sampled-data systems in which the
inter-sample behavior is of interest.
This work extends the approach proposed in Amato et al.

(2006) and Amato et al. (2005) to derive the main results for FTS
analysis of linear systems with jumps. The first contribution of the
paper is a necessary and sufficient condition for FTS. It requires
the computation of the state transition matrix of the system,
which represents a numerically hard problem. In order to tackle
such a problem, we also provide a sufficient condition for FTS,
which requires the solution of two coupled differential–difference
Lyapunov inequalities. The Lyapunov inequalities can be turned
into differential–difference linear matrix inequalities (D/DLMIs),
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which can be efficiently solved by many off-the-shelf numerical
algorithms.
The paper is organized as follows. In Section 2 the definition of

FTS for a linear systemwith jumps is precisely stated and the main
problems we will deal with are defined. In Section 3 the analysis
conditions are given and then they are extended to the case when
the jump time instants are unknown. In Section 4 these conditions
are exploited to analyze the closed-loop system resulting from the
interconnection of a continuous-time systemwith a sampled-data
controller. Finally some conclusions are drawn in Section 5.
Notations. By L2

[0,T ] (l
2
r ) we denote the set of square integrable

(summable) vector-valued functions defined over the interval
[0, T ] (over the set {1, 2, . . . , r}).

2. Problem statement

Let us consider the continuous-time linear time-varying system
described by

ẋ(t) = A(t)x(t), t ≥ 0, x(0) = x0, (1)

where A(·) : t ∈ [0,+∞) 7→ Rn×n is continuous. We assume that
the evolution of the state vector x(t) may be right discontinuous
at the time instants tk > 0, where the state may exhibit a finite
jump from x(tk) to x(t+k ) 6= x(tk), according to the decision of
a ‘‘jump generator system’’. Since A(·) is continuous, x(·) cannot
have a finite escape time. Therefore x(·) turns out to be a piecewise
continuous function, i.e. in each compact interval of [0,+∞) it has
a finite number of discontinuities and the right and left limits at the
discontinuity points are both finite.
The proposed formalism captures many cases of practical

interest. For example if
(
tk, x(t+k )

)
is generated through an

impulsive input entering the system, we reobtain the class of
impulsive control systems (Yang, 2001), whereas if

(
tk, x(t+k )

)
is

computed according to a given algorithm (for example it is the
output of a discrete event system (Boel & Stremersch, 2000)) the
system falls into the category of hybrid control systems (Antsaklis,
1995).
According to Sun et al. (1993), we initially consider the case

when the jump time instants are assigned, say tk, and the state
jump is computed as the output of a discrete-time system,
described by the following difference equation

x(t+k ) = Ad(tk)x(tk), k = 1, 2, . . . , (2)

where Ad(·) : tk 7→ Rn×n. Note that, according to Sun et al. (1993),
sampled-data systems can be described through (1) and (2) (see
also Section 4). As we will show later, our approach can also be
extended to the case when the jump time instants are unknown,
though the conditions for FTS in that case turn out to be more
conservative.
In this paperwe are interested in the behavior of system (1)–(2)

within a finite time interval [0, T ], therefore we denote by
t1, . . . , tr , r ∈ N+, the jump time instants belonging to such an
interval. The solution of system (1)–(2) in [0, T ] is given by

x(t) = Φ(t, 0)x0, t ∈ [0, T ], (3)

where the matrix function Φ(t, τ ) is the state transition matrix
of system (1)–(2). The transition matrix turns out to be piecewise
continuous with possible right discontinuities at the time instants
tk, k = 1, 2, . . . , r . In the first interval Φ(t, τ ) satisfies the
following matrix differential equation
∂

∂t
Φ(t, 0) = A(t)Φ(t, 0), t ∈ [0, t1], Φ(0, 0) = I;

in the following intervals, for k = 1, 2, . . . , r − 1,
∂

∂t
Φ(t, t+k ) = A(t)Φ(t, t

+

k ), t ∈]tk, tk+1],

Φ(t+k , t
+

k ) = Ad(tk)Φ(tk, t
+

k−1),

where t+0 = t0 := 0 (obviously at t0 = 0 there is no discontinuity).
Finally in the last interval we have

∂

∂t
Φ(t, t+r ) = A(t)Φ(t, t

+

r ), t ∈]tr , T ]

Φ(t+r , t
+

r ) = Ad(tr)Φ(tr , t
+

r−1).

In the following we extend the definition of FTS (Amato et al.,
2001; Weiss & Infante, 1967), to the class of linear systems with
jumps in the form (1)–(2).

Definition 1 (FTS of Linear Systems with Jumps). Given a positive
number T , a positive definite matrix R, a positive definite matrix-
valued function Γ (·) defined over [0, T ], with Γ (0) < R, system
(1)–(2) is said to be finite-time stable with respect to

(
T , R,Γ (·)

)
,

if

xT0Rx0 ≤ 1⇒ x(t)
TΓ (t)x(t) < 1 ∀t ∈ [0, T ]. (4)

Remark 2. The definition can be interpreted in terms of ellipsoidal
domains. The set defined by xT0Rx0 ≤ 1 contains all the admissible
initial states. The inequality x(t)TΓ (t)x(t) < 1, instead, defines
a time-varying ellipsoid that bounds the state trajectory over the
interval [0, T ].

Given a piecewise continuous vector-valued function z(·) ∈
L2
[0,T ], with right discontinuities at the points t1, . . . , tr , we can
define three norms: the first is the classical L2-norm, denoted
by ‖z‖2,L. Then, note that the function z(·) univocally defines the
sequence {z(tk)}k=1,2,...,r ∈ l2r (we recall that z(tk) represents the
left limit of z(·) in tk and that z(·) is assumed to be left continuous
in tk); therefore we can also consider the classical l2-norm of the
sequence {z(tk)}, denoted by ‖z‖2,l. Notice that ‖z‖2,l turns out to
be a semi-norm for the signal z(·).
Finally, we can think of z(·) as the composition of two signals,

one belonging toL2 and the other to l2, therefore defining a ‘‘mixed
norm’’ overL2 ⊕ l2

‖z‖2,m :=
[
‖z‖22,L + ‖z‖

2
2,l

]1/2
. (5)

It is simple to recognize that the mixed norm (5) is actually a norm
forL2 ⊕ l2.

3. Main results

The following theorem provides a necessary and sufficient
condition for the FTS of system (1)–(2) involving the state
transition matrix defined in the previous section. The proof can be
readily obtained by using the properties of the transition matrix
(see also Amato et al. (2005)).

Theorem 3. System (1)–(2) is FTS with respect to (T , R,Γ (·)) iff for
all t ∈ [0, T ]

Φ(t, 0)TΓ (t)Φ(t, 0) < R. (6)

The condition in Theorem 3 may be difficult to apply,
unless we are in the time-invariant case, because it requires
the computation of the transition matrix. For this reason,
we provide an alternative condition for FTS which involves
two coupled differential–difference Lyapunov inequalities. The
following lemma is the key result.
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