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a b s t r a c t

In this paper, we consider the stochastic optimal control problem of discrete-time linear systems
subject to Markov jumps and multiplicative noises under two criteria. The first one is an unconstrained
mean–variance trade-off performance criterion along the time, and the second one is aminimumvariance
criterion along the time with constraints on the expected output. We present explicit conditions for the
existence of an optimal control strategy for the problems, generalizing previous results in the literature.
We conclude the paper by presenting a numerical example of a multi-period portfolio selection problem
with regime switching in which it is desired to minimize the sum of the variances of the portfolio along
the time under the restriction of keeping the expected value of the portfolio greater than someminimum
values specified by the investor.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, there has been an increasing interest in the literature
for linear systems subject to Markov jumps and/or multiplicative
noises. This kind of models has found many applications in
engineering and finance as, for instance, in nuclear fission and
heat transfer, population models and immunology, portfolio
optimization, etc., and several results related to the control of these
systems have already been derived.

Regarding the case of linear systems subject to multiplicative
noises on the control and/or state variables, a particular point
of interest is that the stochastic linear quadratic (LQ) control
problem with indefinite state and/or control weighting matrices
may still be well-posed. We recall that a standard assumption in
the literature of the LQ control problem in order to guarantee that
the problem is well posed is that the state weighing matrix is
positive semi-definite and the control weighing matrix is positive
definite. Indefinite LQ control problems for linear systems subject
tomultiplicative noises arise naturally inmany practical situations
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especially in finance (see for instance Chen, Li, & Zhou, 1998;
Zhou & Li, 2000). For the continuous-time case, thewell-posedness
for the indefinite LQ problem was first shown in Chen et al.
(1998) and since then several papers have been published on this
subject. Sufficient conditions for the well-posedness and several
properties of the generalized Riccati equations arising in this
indefinite stochastic LQ control problem were studied in Ait Rami,
Chen, Moore, and Zhou (2001), Lim and Zhou (1999), Luo and
Feng (2004), Wu and Zhou (2002) and Zhu (2005) and through
linear matrix inequalities in Ait Rami, Moore, and Zhou (2001)
and Ait Rami and Zhou (2000). For the discrete-time case, the
optimal control law for the LQ control problem was derived in
Beghi and D’Alessandro (1998), considering systems with only
control dependent noises. The partially observed case was studied
in Moore, Zhou, and Lim (1999). In Ait Rami, Chen, and Zhou
(2002), it was shown that the solvability of a generalized difference
Riccati equation is necessary and sufficient for the existence of
an optimal control for the stochastic indefinite LQ optimal control
problem. Regarding the case of linear systems subject to Markov
jumps, there has been also a great number of results derived on the
control theory for this class ofmodels, and the reader is referred, for
instance, to Elliott, Dufour, andMalcolm (2005), the books (Boukas,
2005; Costa, Fragoso, & Marques, 2005) and the references therein
for an overview on this subject.

In Li and Zhou (2002), Li, Zhou, and Ait Rami (2003) and
Liu, Yin, and Zhou (2005) the authors considered the finite and
infinite horizon indefinite LQ regulator problems for continuous-
time linear systems with Markov jumps as well as multiplicative
noises acting on the parameters of the system. A similar problem
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was treated within a time varying framework and infinite time
horizon in Dragan and Morozan (2004). The discrete-time case
was studied in Costa and de Paulo (2007, 2008) for the finite
and infinite horizon indefinite LQ regulator problems, and in
Dombrovskii and Lyashenko (2003) for the LQ control problem
with applications to a portfolio optimization problem. Conditions
for the mean square exponential stability, stochastic observability
and stochastic detectability for this class of models were derived
in Dragan and Morozan (2006a,b).

One of the applications of indefinite LQ control problem for
linear systems subject tomultiplicative noises andpossibleMarkov
jumps that recently has found a great deal of interest has to dowith
the multi-period mean–variance portfolio optimization problem.
Mean–variance portfolio optimization is a classical financial
problem introduced, for the one-period case, byMarkowitz (1959),
which paved the foundation for the modern portfolio theory. The
main goal is to maximize the expected return for a given level
of risk, minimize the risk for a given level of expected return, or
minimize a trade-off between the variance of the portfolio and the
expected return of the portfolio. There has been nowadays a huge
literature on this subject, with some extensions, as can be seen,
for instance, in Elton and Gruber (1995), Howe and Rustem (1997),
Howe, Rustem, and Selby (1996), Rustem, Becker, andMarty (1995)
and Steinbach (2001), among others. The multi-period version of
this problem has recently been analyzed in continuous as well as
in discrete-time. The continuous-time version of the Markowitz’s
problem was studied in Zhou and Li (2000), using the indefinite
stochastic LQ control theory developed in Chen et al. (1998),
with closed-form efficient policies derived, along with an explicit
expression of the efficient frontier. The discrete-time version of the
mean–variance allocation problemwas studied in Li andNg (2000),
and later generalized in Zhu, Li, and Wang (2004) for the risk
control over bankruptcy, in Costa and Nabholz (2007) for the case
with intermediate restrictions, and in Leippold, Trojani, and Vanini
(2004) for the case considering liabilities in the portfolio. More
recently a revised mean–variance policy that enables the investor
to receive a free cash flow stream during the investment process
was derived in Cui, Li, Wang, and Zhu (2010). In Yin and Zhou
(2004) and Zhou and Yin (2003) it was presented a Markowitz’s
mean–variance portfolio selection with regime switching, which
was solved through an auxiliary indefinite LQ control problem of
a Markov jump with multiplicative noises linear system. The idea
of introducing theMarkov jumps was that typically the underlying
marketmight havemany ‘‘modes’’ or ‘‘regimes’’ that switch among
themselves from time to time. The market mode would reflect the
state of the underlying economy, the general mood of investors
in the market, and so on. Under a different point of view, in
Cakmak and Ozeckici (2006), Canakoglu and Ozeckici (2010) and
Celikyurt and Ozeckici (2007) the authors considered the discrete-
time multi-period mean–variance allocation problem for the case
in which the parameters are subject to Markov jumps, following
an approach closely related to that in Li and Ng (2000). It should
be pointed out that only the final values of the mean and of
the variance of the portfolio are considered, which considerably
simplifies the problem. By using some numerical procedures based
on primal–dual methods, the case in which intermediate values
of the mean and of the variance of the portfolio are considered
for the bankruptcy control problem was studied in Zhu et al.
(2004). Following a similar approach, the case in which themarket
is subject to Markov jumps was considered in Costa and Araujo
(2008) and Wei and Ye (2007).

As remarked above, in the multi-period mean–variance prob-
lem usually only the final values of the mean and of the vari-
ance are considered, which considerably simplifies the problem.
But other criteria could be considered, for instance, one could con-
sider a portfolio optimization problem in which the performance
criterion is composed by a linear combination along the time of

the trade-off between the variance of the output (which could rep-
resent the risk associated to the value of the portfolio or a track-
ing error between the value of the portfolio and a benchmark) and
the expected value of the output (which could represent the ex-
pected value of the portfolio or the expected value of the surplus
between the portfolio and the benchmark). In this case all the val-
ues of the variance and expected value of the output would be
involved in the optimization problem, which makes the problem
harder to be solved. This kind of problemmotivated us to consider
in this paper the discrete-time optimal control problem of Markov
jump with multiplicative noises linear systems with two perfor-
mance criteria. The first one, denoted by PU (ν, ξ) and defined in
(3), is composed by an unconstrained linear combination along the
time of a trade-off (set by the vectors ν and ξ ) between the vari-
ances and expectations of a scalar output y(t) of the system. The
second one, denoted by PC (ν, ϵ) and defined in (4), is composed
by a minimization of a linear combination of the variances along
the time (weighted by the vector ν) under some restrictions of the
minimal value of the output of the system (set by the vector ϵ). As
pointed out in Li and Ng (2000), when applying dynamic program-
ming to analytically solve thesemulti-periodmean–variance prob-
lems a technical difficulty arises due to the existence of a nonlinear
term of the form E( y(t))2 in the objective function. To overcome
this difficult we adopt a similar approach as in Li and Ng (2000)
and introduce a tractable LQ auxiliary problem in which the con-
trol weighing matrix is equal to zero and with the presence of lin-
ear terms. This problem, defined in (5) in function of a vector λ,
is denoted by A (λ, ν). The optimal control strategy for this prob-
lem is explicitly derived from a set of generalized coupled Riccati
difference equations and some parameters obtained from some re-
cursive equations. Provided that some conditions are satisfied, the
optimal solution of the problems PU (ν, ξ) and PC (ν, ϵ) can then
be obtained via the solution of the auxiliary problem A (λ, ν), after
setting λ to an appropriate value that depends on ξ for problem
PU (ν, ξ), and ϵ for problem PC (ν, ϵ). These results generalize the
scalar terminalmean–variance problem considered in Cakmak and
Ozeckici (2006), Canakoglu and Ozeckici (2010) and Celikyurt and
Ozeckici (2007) for the case with Markov jumps, and in Li and Ng
(2000) for the case with no jumps, and also extend the results in
Costa and Okimura (2007, 2009) which considers the multidimen-
sional case, but only for the terminalmean–variance. Our approach
is to derive explicit conditions for optimality of the control strat-
egy rather than applying numerical primal–dual procedures as in
Costa and Araujo (2008), Wei and Ye (2007) and Zhu et al. (2004).

The paper is organized as follows. The notation, some pre-
liminary results and the formulation of the problems PU (ν, ξ)
and PC (ν, ϵ) are presented in Section 2. We also present in
Theorem 1 an analytical optimal control policy for an auxiliary
stochastic LQ control problem A (λ, ν), in terms of a set of intercon-
nected Riccati difference equations and some parameters obtained
from some recursive equations. The main results of the paper are
in Section 3, where we present in Theorems 2 and 3 explicit condi-
tions for the existence of an optimal control strategy for the prob-
lems PU (ν, ξ) and PC (ν, ϵ). Moreover the optimal control strategy
for these problems is obtained from the optimal control strategy of
the auxiliary problem A (λ, ν) after setting λ to some appropriate
values. In Section 4 we present an application of the results to a
multi-period portfolio selection problem under regime switching.
The paper is concluded in Section 5 with some final comments.

2. Problem formulation and auxiliary problems

Throughout the paper the n-dimensional real Euclidean space
will be denoted byRn and the linear space of allm×n realmatrices
by B(Rn, Rm), with B(Rn) := B(Rn, Rn). We use the standard
notation, for A ∈ B(Rn), A ≥ 0 (A > 0 respectively) to denote that
the matrix A is positive semi-definite (positive definite), and tr(A)
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