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a b s t r a c t

Accident modelling is a methodology used to relate the causes and effects of events that lead to acci-
dents. This modelling effectively seeks to answer two main questions: (i) Why does an accident occur,
and (ii) How does it occur. This paper presents a review of accident models that have been developed for
the chemical process industry with in-depth analyses of a class of models known as dynamic sequential
accident models (DSAMs). DSAMs are sequential models with a systematic procedure to utilise precursor
data to estimate the posterior risk profile quantitatively. DSAM also offers updates on the failure prob-
abilities of accident barriers and the prediction of future end states. Following a close scrutiny of these
methodologies, several limitations are noted and discussed, and based on these insights, future work is
suggested to enhance and improve this category of models further.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The chemical process industry (CPI) is a highly complex system
with diverse equipment, control schemes and operating pro-
cedures. It is also common for plants in this industry to utilise a
variety of hazardous materials as raw materials and/or products.
The interactions among these components, human factors, and
management and organisational (M&O) issues make CPI suscepti-
ble to process deviations, which, in turn, may lead to failures if not
properly managed (Khan and Abbasi, 1998c, Papazoglou et al.,
1992). As illustrated by Fig. 1, when process failures occur, some
may be recovered from, while others escalate into minor or major
accidents and losses. To maintain the plant economy at desired
levels, process plants are often equipped with a comprehensive
process control system to ensure smoothness of operation and to
prevent accidents. The system provides protection through varying
degrees of automation, facilitated by human intervention and
shielded by additional layers of protection as mitigating measures
should the system fail. Nevertheless, despite all these measures,
accidents still continue to happen. Examples of recent accidents in
the CPI, along with some key information, are shown in Table 1.

An efficient means of combating accidents is to formulate suit-
able preventive measures targeting the right plant components.

However, this is difficult to realise unless accidents can be antici-
pated and are thoroughly understood, such that the failed
component can be identified prior to the occurrence of an accident.
Such efforts fall within the realm of accident modelling, which
relates the causes and effects of events that lead to accidents.
Effectively, accident modelling seeks to answer two main ques-
tions: (i) why does an accident occur, and (ii) how does it occur. The
development of these methodologies can be traced back to 1941,
when Heinrich introduced the domino theory (Qureshi, 2007).

Accident models can be classified in many ways. Qureshi (2007)
has proposed a reasonably comprehensive classification by dividing
the models into two broad categories, i.e., traditional and modern:
the traditional approach is further categorised into sequential
(SAMs) and epidemiological (EAMs), while the modern approach
includes systematic (SyAMs) and formal (FAMs). This classification
can be further extended by introducing a third category within the
modern approach, called the dynamic sequential accident model
(DSAM) (see Fig. 2). DSAM is a precursor-based technique that in-
cludes two modelling schemes: (i) process hazard prevention ac-
cidentmodels (Kujath et al., 2010; Rathnayaka et al., 2011a); and (ii)
dynamic risk assessment (DRA) models. Some of the most common
accident models based on this categorisation are shown in Fig. 2.

The accuracy, capability, and limitation of accident models vary
significantly, depending on their purpose and focus (Rathnayaka
et al., 2011a). Brief descriptions of these AMs (except the DSAMs
because they will be extensively reviewed in this article), as well as
their limitations regarding their use in the CPI, are summarised in
Table 2. One major problem with these models is that they are
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generally case-specific, with outcomes that are mostly descriptive
and qualitative. Those that have quantitative components suffer
from data scarcity and uncertainty limitations. As such, they have a
limited ability to provide general solutions that are capable of
representing awider class of problems and representing non-linear
interactions, uncertainties and data scarcity.

In contrast, DSAMs have the advantage of simplicity due to
their sequential structure and can represent non-linearity and
interactions through the use of different model sequences within
one framework. DSAMs use real-time precursor data (e.g., near-
miss, mishap, incident, and accident) to estimate the likelihood
of all possible end-states. Furthermore, they provide updated risk
profiles that facilitate better decision-making. Such uses of pre-
cursor data are particularly useful in cases involving a high
likelihood of occurrence or severe losses commonly found in the
CPI, as well as in the nuclear, aerospace, and aviation industries.
Thus, precursor programs have been developed for compulsory
safety requirements such as site-specific and company-specific
near-miss programs in the CPI. Similarly, the nuclear industry
has also introduced the Accident Sequence Precursor (ASP) and
the Institute for Nuclear Power Operation's Significant Event
Evaluation and Information Network programs (van der Schaaf
et al., 1991).

This paper analyses the development and application of dy-
namic sequential accident models as a part of precursor-based ac-
cident modelling. Section 2 extensively reviews the DSAMs and
their developmental steps, and highlights recent developments
within each step. Section 3 covers the application of DSAMs. This is
followed by the future research needed in AMs and risk-
assessment-based precursor data in section 4, and the conclu-
sions of this analysis are presented in section 5.

2. Dynamic sequential accident model (DSAM)

DSAM is a part of precursor-based dynamic risk analysis that
uses common sequential models such as Fault Tree (FT) and Event
Tree (ET) to represent accident scenarios and is often combined
with other approaches to accommodate non-linear and complex
interactions, as well as dynamic updating features, in one frame-
work. To overcome uncertainty issues associated with failure data,
an updating scheme based on precursor data was proposed as
early as 1982 (Minarick and Kukielka, 1982). This study, which was
carried out to estimate core damage failure probability in the
nuclear industry, was echoed in many other efforts, leading to the
development of methodologies that integrate the use of precursor
data into reliability analysis. Some of these works include
Modarres and Amico (1984); Lois (1985); Hoertner and Kafka

(1986); Hoertner et al. (1985); Ballard (1985); Cooke et al.
(1987); Bier and Mosleh (1990); Oliver and Yang (1990); Cooke
and Goossens (1990); Bier (1993); Abramson (1994); Bier and Yi
(1995); Yi and Bier (1998); Meel and Seider (2006); Meel
(2007); Kalantarnia et al. (2009a); Rathnayaka et al. (2011a,
2011b); Pariyani et al. (2012a, 2012b), the most significant of
which is the systematic dynamic methodology proposed by Oliver
and Yang (1990). Their method uses a Bayesian approach to update
the failure probabilities of safety systems in an Event Tree through
the use of precursor data. In addition to overcoming uncertainty
and the scarcity of reliable data, this dynamic feature also provides
posterior information that supports risk-based decision-making
for safer plants.

As illustrated in Fig. 2, the DSAMs can be conveniently cat-
egorised into two modelling schemes: process hazard prevention
accident models (PHPAMs) and dynamic risk assessment (DRA)
models. These will be elaborated in subsequent sections.

2.1. Process hazards prevention accident model (PHPAM)

This family of accident models was recently introduced by
Khan and co-workers, targeting applications in the CPI. To date,
two models have been proposed, i.e., an off-shore oil and gas
process industry accident model, and a system hazard identifi-
cation, prevention and prediction (SHIPP) methodology. The off-
shore oil and gas process industry accident model developed by
Kujath et al. (2010) is founded on the assumption that accidents
in off-shore oil and gas facilities are initiated by hydrocarbon
release, which then propagates into accidents. As a safety mea-
sure, five prevention barriers are installed along the accident
propagation path to prevent and/or mitigate the impact of the
release, as shown in Fig. 3. Within this modelling paradigm, the
worst-case scenario occurs when all barriers fail, resulting in
major or catastrophic accidents. Failures of prevention barriers
are modelled using FT, while the resulting consequences are
modelled using ET. Precursor data of end-state events in the ET
are used to update the failure probabilities of the safety barriers
using Bayesian theory. The model was successfully applied to the
Piper Alpha (1988) and BP Texas City refinery (2005) accidents.
However, the model has some limitations, including the
following: (i) it only considers operational and technical failures
as causes of accidents, and other contributing factors such as
human and organisational errors are not reflected (Rathnayaka
et al., 2011a); and (ii) it does not consider other initiating
events that could lead to accidents, such as explosions or other
forms of energy releases.

To overcome the weaknesses of the off-shore model, an exten-
sion was introduced by Rathnayaka et al. (2011a) by incorporating
the neglected factors into a new framework to model CPI accidents.
This extended model is called the System Hazard Identification,
Prediction and Prevention (SHIPP) methodology. Within the SHIPP
framework, all accident causations related to operational and
technical, human, management and organisational aspects are
included and formulated into seven prevention barriers as shown
in Fig. 4. Among these, three barriers, i.e., release prevention (RPB),
ignition prevention (IPB) and escalation prevention (EPB) are the
same as in the off-shore model. Three barriers are new, i.e.,
dispersion prevention (DPB), human factor prevention (HPB), and
management and organisational prevention (M&OPB). The last
barrier, i.e., damage control and emergency management preven-
tion (DC&EMB), is a combination of the harm and loss barriers in
the off-shore model with some modifications.

Based on a release of material, six consequences are considered
depending on the success or failure of the barriers. These conse-
quences are safe, near-miss, mishap, incident, accident, and serious

Fig. 1. Safety Pyramid (adopted from Phimister et al. (2003)).
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