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Abstract

In this paper a new approach to H2 robust filter design is proposed. Both continuous- and discrete-time invariant systems subject to polytopic
parameter uncertainty are considered. After a brief discussion on some of the most expressive methods available for H2 robust filter design, a
new one based on a performance certificate calculation is presented. The performance certificate is given in terms of the gap produced by the
robust filter between lower and upper bounds of a minimax programming problem where the H2 norm of the estimation error is maximized
with respect to the feasible uncertainties and minimized with respect to all linear, rational and causal filters. The calculations are performed
through convex programming methods developed to deal with linear matrix inequality (LMI). Many examples borrowed from the literature to
date are solved and it is shown that the proposed method outperforms all other designs.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past years, many researchers have devoted a great
deal of attention to the design of robust filters for LTI systems
subject to parameter uncertainty. Two classes of parameter un-
certainty appeared namely, norm bounded and convex bounded
uncertainties, the last one originating the well known class of
polytopic systems to be treated in this paper. The main diffi-
culty for robust filter design stems from the necessity to deter-
mine an unique linear filter able to cope with different models
generated by a set of uncertain parameters, keeping the esti-
mation error norm below some guaranteed level, (Jain, 1975).
Many contributions are available dealing with continuous-time
(Geromel, 1999; Li, Luo, Davidson, Wong, & Bossé, 2002;
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Scherer & Köse, 2006; de Souza & Trofino, 1999; Tuan,
Apkarian, & Nguyen, 2001; Xie & Soh, 1994) and discrete-
time (Geromel, de Oliveira, & Bernussou, 2002; Shaked, Xie,
& Soh, 2001; Theodor & Shaked, 1996; Xie, Soh, & Du, 1999)
systems, among others. All of them, but (Scherer & Köse,
2006), share the following basic characteristics:

(a) the order of the robust filter is equal to the order of the
plant,

(b) performance is not certificated.

Indeed, (a) is imposed as an instrumental condition to keep
the design problem convex. In addition, the robust filter is de-
termined from the minimization of a guaranteed cost, actually
an upper bound of the true performance index, which does not
provide any information about the distance to the true opti-
mal filter. In other words, no information about the degree of
sub-optimality is given. Hence, optimality is not theoretically
certificated. Concerning (b), each new proposal is compared
to the previous ones by means of simulation and performance
determination for specific selected examples. Very recently a
new important result on this area appeared (Scherer & Köse,
2006). The authors have developed a new H2 robust filter
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design method which eliminates both drawbacks we have just
discussed. The robust filter is not restricted to have the same
order of the plant and global optimality is assured. The method
follows from an adequate description of the uncertainty by
means of a class of multipliers. This very interesting theoreti-
cal result has, however, a difficulty which consists on how to
fix the multiplier dynamics and its order for a particular design
problem to be solved. As (Scherer & Köse, 2006) shows, the
optimal filter performance depends on these multiplier charac-
teristics.

For systems with known parameters, the minimization of
the H2 norm of the estimation error provides the celebrated
Kalman filter which is linear and, as a direct consequence of the
optimality conditions, has the same order of the plant (Anderson
& Moore, 1979; Colaneri, Geromel, & Locatelli, 1997). To deal
with parameters uncertainty, the optimal filter is characterized
by the equilibrium solution of a minimax optimization prob-
lem which can be interpreted as a Man–Nature game (for more
detail on this aspect the reader is requested to see Martin &
Mintz, 1983). The Nature selects the uncertain parameter by
maximizing the H2 norm of the estimation error produced by
a filter fixed by Man which has been selected by minimizing
the same norm of the estimation error produced by a parame-
ter fixed by Nature. The equilibrium solution (if any) provides
the best robust filter and the worst uncertainty. Only in some
especial cases the best filter is a Kalman filter associated to the
worst uncertainty, (Geromel & Regis, 2006; Poor, 1980). Un-
fortunately, in the general case, such an equilibrium solution is
extremely difficulty to calculate and only recently its existence
has been proven for a particular class of polytopic parameter
uncertainty (Geromel & Regis, 2006). Due to this, in the gen-
eral case, it is not yet known the order of the optimal filter and
it is not even known if it is finite but, the results of Geromel
and Regis (2006) suggest that the order of the optimal filter is
greater than the order of the plant.

In this paper, continuous- and discrete-time systems with pa-
rameter uncertainty of polytopic type are considered. The equi-
librium solution of the already mentioned Man–Nature game
is not exactly calculated but lower and upper bounds of the
equilibrium H2 cost are provided as a way to certify the opti-
mality gap and, by consequence, the distance from a particular
filter to the optimal robust filter. The lower bound is optimized
and yields a filter of order, prior to eventual zeros and poles
cancellations, much greater than the order of the plant. Based
on the result of this first step, a robust filter is determined. An
upper bound and, consequently, the optimality gap are deter-
mined to certify the performance of the proposed robust filter
with respect to the optimal one.

As a result, the order of the robust filter is, putting aside
eventual poles and zeros cancellations, equal to the order of
the plant times the number of vertices of the convex polytopic
domain. With this respect two important points should be no-
ticed. To our best knowledge, the first method available in the
literature able to design a higher order filter (comparing to the
order of the plant) from the solution of a convex program-
ming problem expressed in terms of pure LMIs was proposed
in Geromel and Regis (2006). The present paper generalizes

the results of Geromel and Regis (2006) to cope with general
polytopic systems. Second, the greater order of the proposed
filter with respect to that of the plant appears to be essential to
reduce conservatism yielding more accurate results when com-
pared to the previous robust filter design procedures. As the
examples solved indicate in many cases we obtain the optimal
or, at least, a near-optimal robust filter.

The paper is organized as follows. In the next section the
problem to be dealt with is stated and previous results on H2
robust filtering are discussed. In Section 3 a lower bound on
the equilibrium solution of the Man–Nature game is proposed
and its determination by means of LMIs is analyzed. Section 4
is devoted to determine a robust filter and an upper bound of
the equilibrium cost. In Section 5 a great number of examples
borrowed from the literature are solved and performances are
compared. Both continuous- and discrete-time systems are
considered. In Section 6 a more realistic practical application
consisting on the estimation of the displacement of a tapered
bar is presented. Models of increasing orders are considered
to evaluate the proposed robust filter performance. Finally,
Section 7 contains the conclusion and final remarks.

The notation used throughout is standard. Capital letters de-
note matrices and small letters denote vectors. For scalars, small
Greek letters are used and N = {1, . . . , N}. For real matrices
or vectors (′) indicates transpose. For square matrices Tr(X)

denotes the trace function of X being equal to the sum of its
eigenvalues and, for the sake of easing the notation of parti-
tioned symmetric matrices, the symbol (•) denotes generically
each of its symmetric blocks. For matrices or transfer functions
U� denotes the linear parameter dependence U� = ∑

i�iUi .
Finally, the same notation

(1)

is used either for transfer functions of continuous- or discrete-
time systems, where the real matrices A, B, C and D of compat-
ible dimensions define a possible state space realization. With
no ambiguity, for continuous-time systems, G(�) denotes G(�)
calculated at �=j� and for discrete-time systems G(�) denotes
G(�) calculated at �=ej� where, in both situations, � ∈ R. For
any real signal �, defined in the continuous- or discrete-time
domain, �̂ denotes its Laplace or Z transform, respectively.

2. Preliminaries and problem statement

Fig. 1 shows the basic structure of the filtering design prob-
lem in terms of the indicated transfer functions. From the ex-
ogenous signal ŵ, the transfer function H(�) generates the
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Fig. 1. Signal filtering structure.
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