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Abstract

We use hybrid-systems techniques for the analysis of reachability properties of a class of piecewise-affine (PA) differential equations that
are particularly suitable for the modeling of genetic regulatory networks. More specifically, we introduce a hyperrectangular partition of the
state space that forms the basis for a discrete abstraction preserving the sign of the derivatives of the state variables. The resulting discrete
transition system provides a qualitative description of the network dynamics that is well-adapted to available experimental data and that can
be efficiently computed in a symbolic manner from inequality constraints on the parameters.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A class of piecewise-affine (PA) differential equations intro-
duced by Glass and Kauffman (1973) in the seventies has been
shown particularly suitable for modeling so-called genetic reg-
ulatory networks, networks of genes, proteins, small molecules,
and their mutual interactions that are involved in the control of
intracellular processes. The dynamics of these networks is hy-
brid in nature, in the sense that the continuous evolution of the
concentration of proteins and other molecules is punctuated by
discrete changes in the activity of genes coding for the proteins.
This switch-like character of gene regulation is well-captured
by the PA models, which have the additional advantage that
the qualitative dynamics of the systems is relatively simple to
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analyze, even in higher dimensions, without the use of numeri-
cal values for the kinetic parameters. Given that such informa-
tion is usually absent in molecular biology, the PA models have
been found to be a valuable tool for the practical analysis of
complex genetic regulatory networks, which would be difficult
to handle with more conventional nonlinear models.

The dynamical properties of the class of PA models consid-
ered here have been the subject of active research for more than
three decades (e.g., Glass & Kauffman, 1973; Belta, Esposito,
Kim, & Kumar, 2005; Edwards, 2000; Ghosh & Tomlin, 2004;
Gouzé & Sari, 2002; Mestl, Plahte, & Omholt, 1995, see
Batt, Ropers, de Jong, Page, & Geiselmann, 2007 for further
references). In our previous work (de Jong et al., 2004), we
have made a contribution to the analysis of these PA models
by showing how to use differential inclusions to deal with dis-
continuities in the righthand side of the equations. Moreover,
we have proposed algorithms and tools to compute a discrete
representation of the state space dynamics in the form of a
state transition graph.

In this note, we carry the analysis of the PA models further
on a number of points, borrowing concepts and techniques from
the field of hybrid systems. First, we partition the state space

http://www.elsevier.com/locate/automatica
mailto:Gregory.Batt@inria.fr
mailto:Hidde.de-Jong@inrialpes.fr
mailto:Michel.Page@iae-grenoble.fr
mailto:Hans.Geiselmann@ujf-grenoble.fr


G. Batt et al. / Automatica 44 (2008) 982–989 983

into hyperrectangular regions in which the time derivatives of
the solutions have a unique sign pattern. In a second step, this
partition motivates the definition of a discrete abstraction (Alur,
Henzinger, Lafferriere, & Pappas, 2000) that leads to a discrete
transition system providing a finer-grained description of the
qualitative dynamics of the system than was hitherto possible
and which is better adapted to currently available experimental
data. Third, we give rules for the symbolic computation of the
discrete state transition system from inequality constraints on
the parameters. The implementation of these rules has been
shown to scale up to large and complex PA models of genetic
regulatory networks.

A long version of this note, containing the proofs of all lem-
mas and propositions, as well as examples of the application of
the method to an actual biological network, is available as sup-
plemental material on the INRIA web site (Batt et al., 2007).
This work extends a short and preliminary version of the paper
presented at the HSCC conference (Batt et al., 2005).

2. PA systems

The dynamics of genetic regulatory networks can be de-
scribed by PA differential equation models using step functions
to account for regulatory interactions (Glass & Kauffman, 1973;
Mestl et al., 1995). Fig. 1 gives an example of the PA model of
a simple two-gene network. Below we define the models and
review some mathematical properties.

We denote by x = (x1, . . . , xn)
′ ∈ � a vector of cellular

protein concentrations, where � = �1 × · · · × �n ⊂ Rn
�0 is

Fig. 1. (a) Example of a genetic regulatory network of two genes (a and b), each coding for a regulatory protein (A and B). Protein B inhibits the expression
of gene a, while protein A inhibits the expression of gene b and its own gene. (b) PA model with step functions corresponding to the network in (a). Protein
A is synthesized at a rate �a , if and only if the concentration of protein A is below its threshold �2

a (xa < �2
a) and the concentration of protein B below its

threshold �b (xb < �b). The degradation of protein A occurs at a rate proportional to the concentration of the protein itself (�axa).

Fig. 2. (a) Mode domain partition of the state space for the model of Fig. 1(b). (b) Focal sets and vector fields associated with the mode domains
M1, . . . , M5, M11. The use of differential inclusions gives rise to sliding mode solutions in M4 (de Jong et al., 2004; Gouzé & Sari, 2002).

a bounded n-dimensional hyperrectangular state space region.
For each protein concentration xi , i ∈ {1, . . . , n}, we distin-
guish a set of constant, strictly positive threshold concentrations
{�1

i , . . . , �
pi

i }, pi > 0. At its threshold concentrations a protein
may affect the expression of genes encoding other proteins or
the expression of its own gene, thus changing the regulatory
mode of the system. The threshold concentrations induce a nat-
ural partition of � into hyperrectangular regions (de Jong et al.,
2004).

Definition 1 (Mode domain partition). M is the hyperrectan-
gular partition (Batt et al., 2007) of � induced by {�1

i , . . . , �
pi

i }.
The sets M ∈ M are called mode domains.

Fig. 2(a) shows the mode domain partition of the state space
of the example network. We distinguish between mode do-
mains like M2 and M7, which are located on (intersections of)
threshold hyperplanes, and mode domains like M1, which are
not. The former are called singular and the latter regular mode
domains. We denote by Mr and Ms the sets of regular and
singular mode domains, respectively. Note that M=Mr ∪Ms.

The PA models with step functions can be defined on the
mode partition as follows (de Jong et al., 2004; Glass &
Kauffman, 1973):

ẋ = h(x) = �M − �Mx, x ∈ M ∈ Mr, (1)

where �M is a vector of positive constants and �M =
diag(�M

1 , . . . , �M
n ) a diagonal matrix of strictly positive con-

stants. That is, in each mode domain the rate of change of
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