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a b s t r a c t

This paper is concernedwith the input designproblem for a class of structurednonlinearmodels. This class
contains models described by an interconnection of known linear dynamic systems and unknown static
nonlinearities. Many widely used model structures are included in this class. The model class considered
naturally accommodates a priori knowledge in terms of signal interconnections. Under certain structural
conditions, the identification problem for this model class reduces to standard least squares. We treat the
input design problem in this situation.
An expression for the expected estimate variance is derived. Amethod for synthesizing an informative

input sequence that minimizes an upper bound on this variance is developed. This reduces to a convex
optimization problem. Features of the solution include parameterization of the expected estimate
variance by the input distribution, and a graph-based method for input generation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in networks, embedded processors, sensors, and ac-
tuators have led to complex systems that are composed of a large
number of interconnected subsystems. Since these interconnected
subsystems are often unknown or hard to model, identification
of the elements in the network is a necessary first step toward
control, signal estimation, or fault detection. A theory of system
identification of interconnected systems has been developed for
the special case where the subsystems consist of known linear dy-
namic blocks and unknown static nonlinearities. An example inter-
connected system is shown in Fig. 1. The elements Li are known
time invariant linear dynamic systemswhileNi are unknown static
nonlinearities to be identified. The problem of identifying the un-
known static nonlinearities is called the structured identification
problem (Claassen, 2001; Hsu et al., 2005a; Hsu, Vincent, Novara,
Milanese, & Poolla, 2005b; Hsu, Poolla, & Vincent, 2008; Wemhoff,

I Supported in part by the UC Discovery Grant ele07-10283 under the IMPACT
program and by the NSF under Grants ECS 03-02554 and ECS 01-34132. The
material in this paper was presented at the 2009 IFAC Symposium on System
Identification, July 6–8, Saint-Malo, France. This paper was recommended for
publication in revised form by Associate Editor Martin Enqvist under the direction
of Editor Torsten Söderström.
∗ Corresponding author. Tel.: +1 303 273 3641; fax: +1 303 273 3602.
E-mail addresses: tvincent@mines.edu (T.L. Vincent), carlo.novara@polito.it

(C. Novara), kennethhsu@gmail.com (K. Hsu), poolla@jagger.me.berkeley.edu
(K. Poolla).

Packard, & Poolla, 1999). This is a related but distinct formulation
from the well known Hammerstein, Wiener and LNL block ori-
ented identification problems (Billings & Fakhouri, 1978; Naren-
dra & Gallman, 1966), as in our case the linear blocks are known
and the allowable interconnections aremore general. In this paper,
the input design problem for this class of interconnected nonlinear
systems is considered.
The data structure used in the structured identification problem

is a Linear Fractional Transformation (LFT) (Packard&Doyle, 1993).
As shown in Fig. 2, all the linear dynamics are collected into the
blockL. The static nonlinear functions are gathered into the block
N . All signals may be vector valued.
The linear blockL is partitioned conformably as

L =

[
Lyu Lye Lyw
Lzu Lze Lzw

]
.

The nonlinear block N has a block-diagonal structure that we
represent as

N =

N1
. . .

Nn

 . (1)

This notation signifies a specific association of some components
of z as inputs to nonlinearity Ni. Without loss of generality, we
assume that each componentNk is single-output. The formulation
allows for repeated elements ofN . That is, it may be known a priori
that two or more elements ofN are identical.
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Fig. 1. Example of an interconnected system.

Fig. 2. LFT model structure.

Fig. 3. Spray deposition system.

1.1. Motivating examples

In order to clarify the contribution of this paper, we provide
some motivating examples.
Multi-zone deposition system: The manufacture of photo-

voltaics involves the deposition of thin films using co-evaporation
sources (Hilt, Vincent, Joshi, & Simpson, 2006; Junker, Birkmire,
& Doyle, 2004). In this continuous deposition process, a substrate
unrolls into a vacuumchamber.Metals are heated to high tempera-
ture, creating ametal plume, which deposits on the substrate. Typ-
ically, several different types of metals are deposited over multiple
zones of the chamber, but the samemetalmay be deposited in sep-
arate zones. Measurement occurs only at the exit of the chamber,
and only determines the total amount of eachmetal deposited, not
the relative amount from a particular zone. A simple schematic of
this process with two zones and a single metal is shown in Fig. 3.
The sources are separated by a known distance δ, and the total de-
positedmaterial y ismeasured. The sources are typically controlled
to a temperature set-point. As the substratemoves very slowly, the
dynamics of this set-point control can be neglected. However, the
mapping from temperature to deposition rate is highly nonlinear.
Since the speed of the substrate is known, this system can bemod-
eled as a Hammerstein system with a one-input/two-output static
nonlinearity followed by a known linear system. Note however
that this Hammerstein structure is non-standard, since the over-
all system is single input, single output, but there are two internal
signals connecting the nonlinear and linear block.
The LFT model structure for this system contains the blocks

L =

[
0 1 1 ξ−k

1 0 0 0

]
and N =

[
f
g

]

Fig. 4. Nonlinear circuit.

where f and g are the static actuator mappings from temperature
to deposition rate, ξ−1 is the unit delay operator, and k is the
number of samples taken when the substrate travels a distance
of δ.
NARX model structure: By using a linear part that generates

delayed inputs andoutputs, our problem formulation encompasses
general NARX model structures. Of course, it is also possible to
specify interconnection structure within this class. An example of
a structured NARX model is described by the difference equation
yk+1 = N1(yk)+N2(yk−1)+N3(uk)+N4(uk−1)+ ek.
Since the inputs to the nonlinearities are delayed versions of the
inputs and outputs, this can also be put into LFT form, with the
dynamic systemL defining the required delays.
Circuit with nonlinear resistors: Consider the electric circuit

shown in Fig. 4. This circuit contains two nonlinear elements with
their behavior denoted by vni = Ni(ini), where ini is the current
through and vni is the voltage across the ith element. The resistor
R and capacitors C1 and C2 are known, or identified using a small
signal experiment. If we apply i1 and i2 as inputs, and measure v1
and v2, the LFT model structure is

L =

 Z11(ξ) −Z12(ξ) 1 0 1 0
−Z12(ξ) Z22(ξ) 0 1 0 1
1 0 0 0 0 0
0 1 0 0 0 0

 ,
where the Zij(ξ) define the impedance of the inner linear circuit
and N is two by two and ‘‘diagonal’’. Besides the obvious
application to electrical circuits, a thermal circuit with the same
structure has been used tomodel buildingwalls, floors and ceilings
in building control applications (Lee & Braun, 2008).

1.2. Key assumptions

The LFTmodel structure captures arbitrary interconnected non-
linear systems. To make our problems more tractable we have to
limit this class. We do so by making some key assumptions on the
signal z.
Our first assumption ensures that the identification problem is

amenable to solution via a quadratic optimization problem.
A.1 z ismeasurable. That is, there exists a LTI system Gm such that[

Lze Lzw
]
= Gm

[
Lye Lyw

]
.

This condition implies that z can be determined from measure-
ments of y and u alone (along with knowledge ofL). This assump-
tion is not as restrictive as might be feared at a first reading. Note
that the spray deposition system, NARXmodel structure, and non-
linear circuit all satisfy condition A.1, as does the system of Fig. 1.
Our next major assumption concerns the experiment design

problem of selecting an informative signal u. As our objective is to
identify the nonlinear elements N , it is more natural and direct
to determine an optimal signal z, which is the input to N . The
following assumption allows us to determine an exogenous signal
u that will generate z.
A.2 N and e are known, and z is co-measurable. That is, there exists
a LTI system Gc such that[
Lze Lzw

]
= LzuGc .
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