
Accepted Manuscript

Title: Swirl Stability and Emission Characteristics of CO-enriched Syngas/Air Flame in a Premixed Swirl Burner

Authors: Nor Afzanizam Samiran, Jo-Han Ng, Mohammad Nazri Mohd Jaafar, Agustin Valera-Medina, Cheng Tung Chong

PII: S0957-5820(17)30225-2

DOI: http://dx.doi.org/doi:10.1016/j.psep.2017.07.011

Reference: PSEP 1113

To appear in: Process Safety and Environment Protection

Received date: 31-1-2017 Revised date: 30-6-2017 Accepted date: 7-7-2017

Please cite this article as: Samiran, Nor Afzanizam, Ng, Jo-Han, Mohd Jaafar, Mohammad Nazri, Valera-Medina, Agustin, Chong, Cheng Tung, Swirl Stability and Emission Characteristics of CO-enriched Syngas/Air Flame in a Premixed Swirl Burner.Process Safety and Environment Protection http://dx.doi.org/10.1016/j.psep.2017.07.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Swirl Stability and Emission Characteristics of CO-enriched Syngas/Air Flame in a Premixed Swirl Burner

Nor Afzanizam Samiran a , Jo-Han Ng b,c , Mohammad Nazri Mohd Jaafar a , Agustin Valera-Medina d , Cheng Tung Chong a,e,*

^a Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.

^d College of Physical Sciences and Engineering Cardiff University, Wales, UK.

*Corresponding author

Address: Faculty of Mechanical Engineering Universiti Teknologi Malaysia 81310 Skudai Johor, Malaysia.

Email: ctchong@mail.fkm.utm.my; Phone: +60(7) 5534631; Fax: +60 (7) 5566159

Highlights

- CO-enriched syngas flames are less stable with higher lean blowout limit.
- Blowout limit increases with increasing CH₄ fraction in CO-rich syngases.
- CO₂-diluted syngases show increased blowout equivalence ratio due to reduced reactivity.
- Pure CO syngas emits high level of CO and NO_x in fuel-lean and fuel-rich region respectively.
- Increasing CO₂ dilution in CO-rich syngases reduced NO_x emissions for mixtures with $\phi \ge 1$.

Abstract

There is significant variation in the composition of synthesis gas derived from biomass, coal or waste. The inconsistency of syngas constituents poses challenges and requires thorough characterisation prior to use as alternative fuel in practical combustion system. The present study investigates the combustion and emission characteristics of CO-enriched syngases by using an atmospheric premixed swirl flame burner. High (CO/H₂=3) and moderate (CO/H₂=1.2) CO-enriched syngases were fully premixed with air and diluents of CH₄ and CO₂ prior to ignition at the burner outlet. Direct flame imaging shows that moderate CO-enriched syngas produces less luminous flames than high CO-rich syngas, signifying less tendency to form soot. Moderate CO-rich syngases show more compact flames with higher intensity owing to higher H₂ contents. The blowout test shows that higher CO content syngases result in lean blowout at higher equivalence ratios, posing stability issues. High fractions of unreactive CO₂ and reactive CH₄ in syngases results in higher lean blowout limit. Emissions wise, high CO-rich syngases show evidently less NO_x emissions as compared to baseline pure CO flames at increasing equivalence ratios. Moderate CO-rich flame

^b Faculty of Engineering and the Environment, University of Southampton Malaysia Campus (USMC), 79200 Iskandar Puteri, Johor, Malaysia.

^c Energy Technology Research Group, Engineering Sciences, University of Southampton, SO17 1BJ, Hampshire, UK.

^e UTM Centre for Low Carbon Transport in cooperation with Imperial College London, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.

Download English Version:

https://daneshyari.com/en/article/6974338

Download Persian Version:

https://daneshyari.com/article/6974338

<u>Daneshyari.com</u>