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a  b  s  t  r  a  c  t

Rare events often result in large impacts and are hard to predict. Risk analysis of such

events is a challenging task because there are few directly relevant data to form a basis for

probabilistic risk assessment. Due to the scarcity of data, the probability estimation of a

rare  event often uses precursor data. Precursor-based methods have been widely used in

probability estimation of rare events. However, few attempts have been made to estimate

consequences of rare events using their precursors. This paper proposes a holistic precursor-

based risk assessment framework for rare events. The Hierarchical Bayesian Approach (HBA)

using hyper-priors to represent prior parameters is applied to probability estimation in the

proposed framework. Accident precursor data are utilized from an information theory per-

spective to seek the most informative precursor upon which the consequence of a rare

event is estimated. Combining the estimated probability and consequence gives a reason-

able  assessment of risk. The assessed risk is updated as new information becomes available

to  produce a dynamic risk profile. The applicability of the methodology is tested through

a  case study of an offshore blowout accident. The proposed framework provides a rational

way  to develop the dynamic risk profile of a rare event for its prevention and control.

©  2015 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

Rare events are highly improbable undesired events but with
severe consequences. Taleb (2007) has classified rare events
into Black Swan and Gray Swan events. The former are
unforeseeable and catastrophic events (e.g., the September 11
terrorist attacks) while the latter (e.g., offshore blowout acci-
dents) can be potentially predicted yet not precisely. In this
paper, “rare events” specifically refer to Gray Swan events. His-
torical information often indicates no or few occurrences of
rare events. Thus, conventional statistical methods would pro-
duce biased and inconsistent estimates of the probabilities of
rare events (Quigley and Revie, 2011; Quigley et al., 2007). The
use of precursor data was proposed as one way to deal with
the problem of data scarceness (Bier and Mosleh, 1990; Yi and
Bier, 1998). Precursors are events that are moderate in sever-
ity and could have evolved to accidents (rare events) given
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further failures of safety barriers (Eckle and Burgherr, 2013;
Johnson and Rasmuson, 1996). Meel and Seider (2006) have
referred to precursors as near-misses and incidents, with inci-
dents having higher probabilities of causing future accidents
(i.e., rare events). They have also claimed that near-misses
can indicate the likelihood of occurrence of future incidents
and accidents and are helpful to prevent accidents. Khakzad
et al. (2014) have recognized the usefulness of precursor data
in rare event probability estimation from two  perspectives:

(1) Precursors are reasonable indicators of rare events.
(2) Precursor data can be used as a foundation to construct

likelihood functions in Bayesian approaches.

Bayesian methods are commonly used in precursor-
based approaches for probability estimation of rare events
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(Kalantarnia et al., 2010; Khakzad et al., 2012; Meel and Seider,
2006). These approaches often model a rare event as a logical
and sequential combination of system component and safety
barrier failures through fault trees, event trees, bow-ties, and
Bayesian networks. To capture the accident scenarios, some
hazard identification techniques such as DyPASI (Paltrinieri
et al., 2013) and ARAMIS (Delvosalle et al., 2006) are used.
The determination of priors is a key issue in the Bayesian
approaches. Posterior distributions are also highly sensitive
to the choice of prior parameters due to scarcity of data. Fur-
thermore, it has been shown that the Hierarchical Bayesian
Approach (HBA) is capable of producing more  consistent esti-
mations than the conventional Bayesian approach (Chen and
McGee, 2008; Yang et al., 2013).

Most literature focuses on the probability estimation of
rare events using precursor data. However, to the authors’
knowledge, limited work has been done on consequence esti-
mation based on precursors. Losses caused by precursors
should convey a certain degree of information associated with
the potential consequence of a rare event. A sound estima-
tion can be obtained based on the measurement of how much
information a rare event and its precursor share with each
other. Mutual information, a concept developed by Shannon
(1948), provides such a measurement.

This paper aims to develop a precursor-based risk assess-
ment framework for rare events. In this framework, the HBA
is applied for probability estimation while mutual informa-
tion is used to develop an estimate for the consequence. The
rest of this paper is organized as follows. Section 2 presents
the basics of the HBA. The concept of mutual information is
discussed in Section 3. Section 4 explains the precursor-based
framework for risk assessment of rare events. The application
of the proposed method is demonstrated through a case study
of an offshore blowout accident in Section 5. Finally, Section 6
provides the conclusions and the directions for future work.

2.  Hierarchical  Bayesian  Approach  (HBA)

A controversial part of any Bayesian method is the develop-
ment of appropriate prior distributions (Siu and Kelly, 1998).
The two-stage Bayesian method was first proposed by Kaplan
(1983) to address source-to-source variability of data when
incorporating available information to develop informative
prior distributions. Kelly and Smith (2009) have claimed that
the two-stage Bayesian model can be viewed as a particular
example of a general hierarchical Bayesian model. The prior
distribution for the parameter of interest, denoted �(�) for a
two-stage Bayesian model, can be written as (Kelly and Smith,
2009):

�(�) =
∫

�1(�|ϕ)�2(ϕ)dϕ (1)

where �1(�|ϕ) is the first-stage prior representing the popula-
tion variability in �; �2(ϕ) is the hyper-prior representing the
uncertainty in ϕ; ϕ is a vector of hyper-parameters, e.g., ϕ = (˛,
ˇ)T.

The prior is developed in multiple stages using generic data
collected from different sources (e.g., different industrial sec-
tors) in a general hierarchical Bayesian model. �(�) is then used
as an informative prior distribution to generate case-specific
posterior distribution using case specific data.

The main advantages of the HBA over conventional
Bayesian methods are its capability to model the population

variability of data from different sources (Siu and Kelly, 1998)
and to borrow strength from other indirect but relevant data
(Yan and Haimes, 2010). Recent years have seen a few appli-
cations of the HBA to the probability estimation of rare events
using precursor data (Khakzad et al., 2015; Khakzad et al.,
2014; Yang et al., 2013). The hierarchical Bayesian model in
this paper was developed based on the above studies.

3.  Mutual  information

Mutual information is a concept from information theory
developed in the context of digital communication (Shannon
and Weaver, 1949). Mutual information can either be inter-
preted as the distance from independence between two
random variables (Cover and Thomas, 1991) or as reduction
of uncertainty of one random variable given the knowledge
of the other one (DeGroot, 1962). The latter is the definition
used in this paper and is further discussed in the following
paragraphs.

Shannon (1948) has used the concept of entropy as a mea-
sure of uncertainty of a random variable. Let X be a discrete
random variable with probability mass function Px(x). The
entropy H(X) is defined as (Lu, 2011):

H(X) = −
∑
x∈X

Px(x) log Px(x) (2)

where the log is to the base of 2 and the unit of H(X) is bit.
The mutual information between two random variables

(i.e., X and Y) is defined as follows (Cover and Thomas, 1991):

I(X; Y) =
∑
x∈X

∑
y∈Y

Px,y(x, y) log
Px,y(x, y)

P(x)P(y)
(3)

where I(X;Y) is the mutual information between X and Y;
Px,y(x, y) is the joint probability mass function; P(x) and P(y)
are marginal probability mass functions.

The above equation can be further rewritten to show the
relationship between mutual information and entropy:

I(X; Y) = −
∑
x∈X

Px(x) log Px(x) −
[

−
∑
x∈X

∑
y∈Y

Px,y(x, y) log Px|y(x|y)

]

= H(X) − H(X|Y)
(4)

where Px|y(x|y) is the conditional probability mass function;
H(X|Y) is the conditional entropy of X given Y.

Sarndal (1974) first introduced a normalized version of
I(X;Y) to represent the relative reduction of uncertainty con-
tained in X given the knowledge of Y:

U(X; Y) = I(X; Y)
H(X)

(5)

where U(X;Y) is known as the asymmetric uncertainty coeffi-
cient.

Sarndal (1974) has also proposed a symmetric version of
U(X;Y):

S(X; Y) = I(X; Y)
1/2[H(X) + H(Y)]

(6)

The concept of mutual information has been widely used
for system feature selection (Hoque et al., 2014), system
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