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This paper is concerned with asymptotic properties of consensus-type algorithms for networked systems
whose topologies switch randomly. The regime-switching process is modeled as a discrete-time Markov
chain with a finite state space. The consensus control is achieved by using stochastic approximation
methods. In the setup, the regime-switching process (the Markov chain) contains a rate parameter ¢ > 0
in the transition probability matrix that characterizes how frequently the topology switches. On the other
hand, the consensus control algorithm uses a stepsize u that defines how fast the network states are
updated. Depending on their relative values, three distinct scenarios emerge. Under suitable conditions,
we show that when 0 < ¢ = @ (), a continuous-time interpolation of the iterates converges weakly to
a system of randomly switching ordinary differential equations modulated by a continuous-time Markov
chain. In this case a scaled sequence of tracking errors converges to a system of switching diffusion. When
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Limit ODE 0 < ¢ < u, the network topology is almost non-switching during consensus control transient intervals,
Consensus algorithm and hence the limit dynamic system is simply an autonomous differential equation. When y < ¢, the
Convergence Markov chain acts as a fast varying noise, and only its averaged network matrices are relevant, resulting

in a limit differential equation that is an average with respect to the stationary measure of the Markov

chain. Simulation results are presented to demonstrate these findings.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies convergence properties of consensus-
type algorithms for networked systems in which the network
topologies switch randomly. Consensus problems are related to
many control applications that involve coordination of multiple
entities with only limited neighborhood information to reach a
global goal for the entire team. Typical examples include multi-
agents in robotics, flocking behavior in people and animals,
wireless communication networks, sensor networks, platoon
formation in ground and aerial vehicles, distributed computing,
biological systems, etc. Due to the diversity in application domains,
detailed system descriptions vary substantially and diversified
methodologies are needed to treat such systems. However, one
common feature of the underlying problems is: Although the
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goal of control is global to the entire system, only limited local
information is available for control actions.

There is an extensive literature on consensus control in a variety
of application areas, including computing load balancing (Lynch,
1997; Xiao, Boyd, & Kim, 2007), sensor networks (Akyildiz, Su,
Sankarasubramniam, & Cayirci, 2002; Ogren, Fiorelli, & Leonard,
2005), mobile agents (Jadbabaie, Lin, & Morse, 2003; Olfati-Saber
& Murray, 2004), flocking behavior and swarms (Liu, Passino, &
Polycarpou, 2003; Toner & Tu, 1998; Viseck, Czirook, Ben-Jacob,
Cohen, & Shochet, 1995), etc. Related algorithms and theoretical
developments were reported in Cortes and Bullo (2005), Huang
and Manton (2009) and Ren and Beard (2005). Much recent work
was motivated by Viseck et al. (1995), which in fact is a version
of a model introduced earlier in Reynolds (1987) for simulating
flocking and schooling behaviors in computer graphics. The effort
in the control community can be traced back to the asynchronous
stochastic optimization algorithms (Tsitsiklis, Bertsekas, & Athans,
1986), which was substantially generalized in Kushner and Yin
(1987). In this paper, we consider a specific control structure
for average consensus. It is noted that consensus control often
leads to consensus without further constraints on the actual state.
Practical systems always require states to be confined in some
ways. Our link-based control provides a natural and practical
constraint on the state. Consider for instance the problem of
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networked computing (Xiao et al., 2007; Yin, Xu, & Wang, 2003).
A computational job is assigned to a network of r computers.
The goal is to achieve approximately equal workload distribution
for each computer to avoid idle or overloaded running states. A
workload transfer from node i to node j results in a decrease of
workload at node i and an increase of the same amount at node j.
This control structure does not change the total workload amount
of the whole system and provides a natural constraint to bound
the node states. This scenario can be easily recognized in different
application domains such as material distribution systems, data
fusion in distributed sensor networks, deployment of sensors,
coordination of unmanned aerial vehicles (UAVs). It will be shown
that this constraint leads to a Markovian dynamic system that
connects seamlessly with the Markov chain descriptions of the
network topology switching dynamics.

To model inherent uncertainties and time-varying nature
in communication networks, we consider consensus control
problems with regime-switching network topologies. In our setup,
we quantify the time-varying parameter process as a Markov chain
with a transition matrix that includes a small parameter ¢ > 0,
which characterizes the rates of network switching. We then use
a stochastic recursive algorithm to carry out the consensus control
task. The algorithm uses a small stepsize ;> 0, which defines how
fast the network node states are updated. The impact of network
switching rates on convergence properties of consensus control
algorithms is captured by the relationship between ¢ and p. There
are three cases concerning the relative sizesof s and 4: 0 < ¢ =
O(),0 < & K€ u,and 0 < pu K e. Asymptotic behaviors of
consensus control algorithms under these cases are fundamentally
different. When ¢ = @ (u), through appropriate interpolations,
the limit is described by regime-switching ordinary differential
equations. When ¢ < ., the network topology rarely changes and
is essentially fixed during the transient interval of active consensus
control. We thus practically deal with a fixed network. When
U < g, the network is changing so fast that it acts like a noise,
and consequently only its average with respect to the stationary
measure determines convergence properties of the consensus
control.

Switching network topologies were studied in Moreau (2005),
Olfati-Saber, Fax, and Murray (2007), and more recently in Huang,
Dey, Nair, and Manton (2010) and Kar and Moura (2009). This
paper differs from the existing literature in several essential
aspects. Moreau (2005) and Olfati-Saber et al. (2007) do not
use Markov formulations. In Huang et al. (2010), the authors
considered stochastic consensus over lossy wireless networks, in
which the proposed measurement model has a random link gain,
an additive noise, and a Markov lossy signal reception; arbitrary
switching was also considered there. Kar and Moura (2009)
employs randomly switching Laplacian matrices together with
observation noises that may be state dependent and Markovian.
The Laplacian matrices share a common average. Its main approach
is based on convergence of products of stochastic matrices.
Thus, system analysis and consensus are established from the
averaged network. We treat a more general Markov model and
treat a much larger class of noises. In this paper the graph is
modulated by a discrete-time Markov chain. In addition to the
traditional additive structure of the noise, we allow the noise
to be nonadditive, correlated and non-Markovian. The function
involved in the nonadditive noise can be time varying and depend
on both the analog states and Markov chain states; see the remark
section at the end of this paper. In lieu of examining the product
of random matrices, our analysis is based on stochastic analysis
of random processes. Thus far reaching results are obtained that
better delineate the system dynamics and evolution. We establish
convergence and rates of convergence of the algorithm, and
study the intrinsic properties of the random dynamic systems

involved. Interacting with consensus control strategies, we show
that the limit system depends on relative speeds of the control
and topology switching frequencies, and it may still be a stochastic
system whose convergence is much harder to derive. By treating
different rates of variation of the control and time-varying
Markov parameter, our results depart from typical consensus
control conclusions, initiate a multi-scale modeling and analysis,
and potentially better reflect the needs of adjusting consensus
control strategies in light of topology switching. Furthermore,
the expanded classes of noises can cover many communication
schemes.

The rest of the paper is organized as follows. First, networked
systems and consensus control problems are introduced in
Section 2. Some basic properties of networked systems are derived
for time-invariant systems, which are to be used in subsequent
convergence analysis. Section 3 sets the stage for networked
systems with randomly time-varying topologies. The problem
formulation of regime-switching network topologies is introduced.
Treating such systems are our primary concerns in this paper.
Convergence analysis under the scenario ¢ = @ () is presented
in Section 4. It is shown that in this case, convergence of the
consensus control is governed by a regime-switching ordinary
differential equation. Convergence rates are derived by using a
centered and scaled sequence of the iterates. Using the weak
convergence methods, we prove that a suitably scaled sequence
of network states converge to the solution of a regime-switching
stochastic differential equation. We also establish certain stability
results. Section 5 focuses on convergence analysis for the cases of
fast-switching and slow-switching network topologies. These two
sections delineate a complete picture of convergence properties
of consensus control algorithms. Section 6 provides simulation
examples to illustrate the asymptotes. Finally Section 7 concludes
the paper with further remarks.

2. Networked systems and consensus control

Consider a networked system of r nodes, given by
x;“:x;—i—u;, i=1,...,r, (1)

where u!, is the node control for the ith node, or in a vector form
Xni1 = Xn + Uy Withx, = [}, ..., %), u, = [u),...,u’]. The
nodes are linked by a sensing network, represented by a directed
graph g whose element (i, j) indicates estimation of the state x, by
node i via a communication link, and a permitted control v¥ on the
link. For node i, (i,j) € § is a departing edge and (I,i) € G is an
entering edge. The total number of communication links in § is .
From its physical meaning, node i can always observe its own state,
which will not be considered as a link in §.

2.1. Networked observation and control

In this paper, we limit the control structures to the link control
among nodes permitted by 4. The node control u}, is determined
by the link control v,i{ . Since a positive transportation of quantity
vy on (i, j) means a loss of v, at node i and a gain of vy at node
J, the node control at node i is u, = — 3" co Ui + D eq Vn-
The most relevant implication in this control scheme is that for all
n, Y X, = Y, x) = nr, for some 5 € R that is the average
of xp. That is, n = Z;:] x{)/r. Consensus control seeks control
algorithms that achieve x, — n1, where 1 is the column vector
of all 1s. Alink (i, j) € § entails an estimate, denoted by X, of x;

by node i with estimation error ds, i.e.,

X=X +dl. (2)



Download English Version:

https://daneshyari.com/en/article/697457

Download Persian Version:

https://daneshyari.com/article/697457

Daneshyari.com


https://daneshyari.com/en/article/697457
https://daneshyari.com/article/697457
https://daneshyari.com/

