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a b s t r a c t

An adaptive algorithm, consisting of a recursive estimator for a finite impulse response model having
two non-zero lags only, and an adaptive input are presented. The model is parametrized in terms of the
first impulse response coefficient and themodel zero. For linear time-invariant single-input single-output
systemswith real rational transfer functions possessing at least one real-valued non-minimumphase zero
of multiplicity one, it is shown that themodel zero converges to such a zero of the true system. In the case
of multiple non-minimum phase zeros, the algorithm can be tailored to converge to a particular zero. The
result is shown to hold for systems and noise spectra of arbitrary degree. The algorithm requires prior
knowledge of the sign of the high frequency gain of the system as well as an interval to which the non-
minimum phase zero of interest belongs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

How to cope with system complexity is a key issue in system
identification. A model is always an idealization of the real world
and the purpose of modeling is to capture characteristics of the
real systembehavior that are important for the application at hand,
despite that the complete system behavior cannot be modeled. It
has long been recognized that the meaningful modeling should
be based on the intended model use; see for example Gevers and
Ljung (1986). This issue was very much brought into focus during
the efforts, initiated in the early 1990s, to address the so-called
identification for control problem (Gevers, 1993; Goodwin, Gevers,
&Ninness, 1992; Rivera& Jun, 2000;VandenHof& Schrama, 1995).
A key outcome here was the recognition of the importance of the
experiment design1 and this leads to iterative approaches trying
to achieve experimental conditions such that the bias error was
distributed over frequencies to suit control applications. However,
also computational methods for optimal experiment design were
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revisited and extended (Hildebrand & Gevers, 2003; Jansson &
Hjalmarsson, 2005; Lindqvist & Hjalmarsson, 2001).

A well-known problem in system identification is the curse
of complexity, i.e. the model uncertainty grows with the system
complexity so that for highly complex systems themodel becomes
virtually useless. Through some simple examples, it was advocated
in Hjalmarsson (2005) that it is possible to combat this problem
by careful experiment design and that this also allows simple
models to be used (as long as only a limited amount of system
properties are to be extracted from themeasurements). The cost of
an experiment vs. the amount of information to be extracted has
been formalized in Rojas, Syberg, Welsh, and Hjalmarsson (2010)
for frequency function estimation and later on elaborated upon in
Hjalmarsson (2009) for general system properties.

Following up on Hjalmarsson (2005), the dual role of a ‘‘good’’
input as (1) an enhancer of system properties of interest, and (2) as
an attenuator of properties of little or no interest was formalized
in Mårtensson and Hjalmarsson (2011). In particular it was shown
that, under certain conditions, an input that is designed to be
optimal for a scalar cost function and for a full order model, results
in experimental data for which also reduced order models can be
used to consistently identify the property of interest.

The special case of identification of real non-minimum phase
(NMP) system zeros has been considered in Jansson (2004);
Mårtensson, Jansson, and Hjalmarsson (2005) where it is shown
that the input

un+1 = z−1
∗

un + rn, (1)

where z∗ is the NMP zero of interest and {rn} is white noise, allows
z∗ to be consistently identified using a two parameter FIR model.
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Even though conceptually interesting, the catch of this result from
a practical point of view is, of course, that the input depends
on the zero to be identified. Hence, even though it is shown in
Jansson (2004) that the choice of the pole of the input spectrum
is not so critical for the accuracy of the estimate, the practical
applicability of the result is limited. It is common that an optimal
experiment design depends on the true system and there are two
main approaches to circumvent this problem: (1) robust input
design where the design takes into account that the true system
lies in an uncertainty set a priori (Rojas, 2008), and (2) adaptive,
or sequential, design where the design is successively updated as
new data is collected from the system (Lindqvist & Hjalmarsson,
2001). Recently, it has been shown (Gerencsér, Hjalmarsson, &
Mårtensson, 2009) that when the true system is in the model set
and when an ARX model is used, adaptive input design achieves
asymptotically (in the sample size) the same accuracy as a non-
adaptive design where the true system is known. See also the
recent survey Pronzato (2008).

In this contribution we revisit the zero estimation problem and
propose an adaptive approach. We consider stable rational causal
discrete-time linear time-invariant systems subject to stationary
stochastic disturbances. We show that it is possible to estimate
a real-valued zero of multiplicity one outside the unit circle
consistently using a simple two parameter FIR model, if the input
can be manipulated and some prior information regarding the
location of the zero of interest is available. The main contribution
is the convergence analysis of this algorithm. We remark that
existing consistency results of recursive identification/adaptive
control algorithms in the case of severe undermodeling, which is
the case in this contribution, are very limited.

Our motivation for this study is two-fold. Firstly, NMP zeros
are important in control applications as they limit closed loop
performance (Skogestad & Postlethwaite, 1996) and in many
applications such zeros are real-valued and simple, e.g. drumboiler
dynamics (Kwatny & Berg, 1993) and aircraft dynamics (Dahleh
& Diaz-Bobillo, 1995). Secondly, the standard assumption that
the true system belongs to the model set is unrealistic in many
applications. Our contribution suggests a method to ensure that
important system quantities can be estimated consistently despite
model limitations. To examine the viability of this path is left for
future research.

The outline is as follows. Assumptions are introduced in Sec-
tion 2. Consistency formodels of restricted complexity is discussed
in Section 3. An adaptive algorithm is proposed in Section 4 and
the ODE (ordinary differential equation) corresponding to this al-
gorithm is analyzed in Section 5. The main convergence result is
provided in Section 6 and the result is illustrated in Section 7 by
way of a simulation example.

2. Assumptions

The assumptions in this section are assumed to hold throughout
the entire paper.

Assumption 2.1 (System). The system has a state-space represen-
tation of the form

ξn+1 = Aoξn + Boun + K oeon
yn = Coξn + eon

(2)

where un ∈ R and yn ∈ R represent the input andmeasured output
at time n, respectively, where ξn ∈ Rm, for some positive integer
m, is the state vector, and where eon ∈ R represents noise acting on
the system.

The transitionmatrixAo has all its eigenvalues strictly inside the
unit circle, i.e. the system is internally stable.

The input–output relationship of the system is given by

yn = Go(q)un + wo
n, (3)

where

Go(q) = Co(qI − Ao)−1Bo
=

∞−
k=1

g∗

k q
−k (4)

andwo
n = Ho(q)eon with Ho(q) = Co(qI − Ao)−1K o

+ 1. The system
has one pure time-delay, i.e. g∗

1 ≠ 0.
The system has a real-valued NMP zero of multiplicity 1 at an

unknown location z∗, i.e. Go(z∗) = 0 where z∗ ∈ R, |z∗| > 1.

Notice that the systemmayhave other zeros than z∗, real aswell
as complex valued.

Assumption 2.2 (Prior System Knowledge). The following prior
knowledge is assumed:

(i) A real compact set

G = {g1 : g
1

≤ g1 ≤ ḡ1}, 0 ∉ G, g∗

1 ∈ G. (5)

(ii) A compact interval Z ⊂ R with the following properties

Go(z) = 0, z ∈ Z ⇒ z = z∗
z ∈ Z ⇒ |z| > 1.

(6)

(iii) The parity of the number of system zeros on the ray {αz∗, α >
1} is known.

Notice that since the interval defining G can be arbitrarily large,
the assumption that a set G is known effectively means that the
sign of the first impulse response coefficient has to be known. This
is equivalent to the assumption of knowledge of the sign of the
high frequency (or instantaneous) gain frequently used in adaptive
control (Åström &Wittenmark, 1995).

Assumption 2.3 (Noise). The noise {eon} is a sequence of indepen-
dent random variables of zero mean and variance λo for which

sup
n

E[eε(e
o
n)

2
] < ∞, (7)

holds for some ε > 0.

We remark that (7) holds for bounded random variables as well as
for Gaussian random variables.

Assumption 2.4 (Input). The input is generated by

un+1 = ρ−1
n un +


λu


1 − ρ−2

n rn (8)

where λu > 0 is a user-defined constant and where {rn} is a
sequence of independent random variables of zero mean and unit
variance. Furthermore, {rn} is independent of {eon} and subject to
the condition

sup
n

E[eε(rn)
2
] < ∞ for some ε > 0. (9)

The motivation for (8) stems from (1). A recursive estimate of z∗
will be used for the sequence {ρn}. This is part of the algorithm
andwill be discussed later. The factor

√
λu

1 − ρ−2

n in (8) ensures
that the power E[u2

n] of the input equals λu when ρn = ρ ∈ R
(constant), with |ρ| > 1.

3. Consistency and models of restricted complexity

3.1. Introduction

Consistency is one of the key issues in system identification.
This concerns whether the system will be recovered by the
estimatedmodel as the number of data samples grows unbounded.
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