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a b s t r a c t

This paper presents a set of new centralized algorithms for estimating the state of linear dynamic
Multiple-InputMultiple-Output (MIMO) control systemswith asynchronous, non-systematically delayed
and corrupted measurements provided by a set of sensors. The delays, which make the data available
Out-Of-Sequence (OOS), appear when using physically distributed sensors, communication networks and
pre-processing algorithms. The potentially corruptedmeasurements can be generated bymalfunctioning
sensors or communication errors. Our algorithms, designed to work with real-time control systems,
handle these problems with a streamlined memory and computational efficient reorganization of the
basic operations of the Kalman and Information Filters (KF & IF). The two versions designed to deal only
with valid measurements are optimal solutions of the OOS problem, while the other two remaining are
suboptimal algorithms able to handle corrupted data.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The state of a complex control system is estimated by its
fusion center with the data provided by its sensors. The time
and order of arrival of the information at the fusion center
depends on many factors, such as the physical distribution of the
sensors and the communication network used to send the data.
A difficult scenario occurs when the delays and the sequence of
arrival of the information are not fixed, constituting the named
Out-Of-Sequence Problem (OOSP) (Bar-Shalom, 2002). Another
important problem happens when some data are provided by
malfunctioning sensors or corrupted during the communication,
and these behaviors are not modeled in the estimation algorithms.
The fusion system is then in charge of assessing the validity of the
information and deciding how to treat the erroneous data (Hall,
1992). Finally, both problems are usually aggravated in networked
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real-time control systems because the solution adopted to tackle
them can affect the stability of its feedback loops (Hespanha,
Naghhtabrizi, & Xu, 2007; Sinopoli et al., 2004).

In the case of sequential fusion algorithms, such as the KF
and IF (Mutambara, 1998), there are three naïve solutions to deal
with the OOSP. The first, rejecting the delayed information, is
only appropriatedwith spurious delayedmeasurements because it
increases the uncertainty and reduces the reliability of the control
system (Hespanha et al., 2007; Sinopoli et al., 2004). The second,
buffering all the data related with an instant before estimating
its state (Lopez-Orozco, de la Cruz, Besada, & Rupiezed, 2000), is
not valid for control systems where the response is needed before
all the data are available. Finally, the third consists of storing the
estimates of the state, the control signals, and the sensor data for all
the time instances; rolling back to the time-stamp associated with
themeasurementwhich has just arrived, and re-starting the fusion
process from that measurement (Kosaka, Meng, & Kak, 1993). This
last solution lets the fusion center obtain the same results as if it
had received the data without delays. However, it increases the
memory needs of the fusion center and its computational overload
introduces delays that can affect the controller. The new OOS
versions of some estimators, such as Anxi, Diannong, Weidong,
and Zhen (2005), Bar-Shalom (2002), Bar-Shalom, Mallick, Chen,
and Washburn (2004), Challa, Evans, Wang, and Leggy (2002),
Feng, Ge, and Wen (2008), Hilton, Martin, and Blair (1993), Ito,
Tsujimichi, and Kosuge (1998), Lanzkron and Bar-Shalom (2004),
Lu, Zhang, Wang, and Teo (2005), Mallick, Coraluppi, and Carthel
(2001), Matveev and Savkin (2003), Nettleton and Durrant-Whyte

0005-1098/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2011.02.030

http://dx.doi.org/10.1016/j.automatica.2011.02.030
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:evabes@dacya.ucm.es
mailto:jalo@dacya.ucm.es
mailto:besada@grpss.ssr.upm.es
mailto:jmcruz@fis.ucm.es
http://dx.doi.org/10.1016/j.automatica.2011.02.030


1400 E. Besada-Portas et al. / Automatica 47 (2011) 1399–1408

(2001), Rheaume and Benaskeur (2008), Shen, Zhu, Song, and Luo
(2009), WenHui, Lin, GuoHai, and AnXi (2006), Zhang, Li, and Chen
(2002), Zhang, Li, and Chen (2003), Zhang, Xie, Zhang, and Soh
(2004) and Zhang, Li, and Zhu (2005) for the KF, reduce these delays
and memory needs.

The erroneous data problem can be tackled by including a
validation step for testing if the measurements are coherent with
the state of the system and rejecting themwhen they are not (Hall,
1992). When the OOSP is also present, the two problems interact.
On the one hand, a validation test dependent on the estimate
of the state that only considers the measurements available so
far is influenced by their order of arrival. On the other hand, the
estimates will depend on the data which have not been rejected
because they successfully pass the validation test.

This paper presents a set of simple memory and computational
efficient algorithms designed to estimate the state of MIMO linear
control systemswith additive non-correlated Gaussian noise in the
transition and measurement models with all the valid available
data received up to this point with random delays. They extend
the range of applicability of our first OOS algorithm, named IFAsyn
(IF for Asynchronous data) in Besada-Portas, Lopez-Orozco, and de
la Cruz (2007) and Besada-Portas, Lopez-Orozco, Besada, and de la
Cruz (2009) and hereafter IFAsyn-I (IFAsyn-version I), to systems
that work without prior knowledge of the measurement time-
stamps, assimilate multiple measurements with different time-
stamps in a single update step, and incorporate a validation step
to detect corrupted data. When the validation step is disabled,
they find the same optimal solution as the KF. When the validation
step is enabled, their results and the KF ones can differ, although
our experiments show that the differences are negligible. The new
algorithms, hereafter IFAsyn-(II, III, IV, V), also reduce the memory
and computational needs of IFAsyn-I.

This paper also includes a comprehensive comparison of our
OOS algorithms with many others. In short, all versions of IFAsyn
are computationally efficient, simple to implement, and general
in scope because they already: (1) include the control signal and
(2) consider the multisensor case. Besides, IFAsyn-(II, III, IV, V)
work without prior knowledge of the data time-stamps, IFAsyn-
(III, V) assimilate multiple measurements in a single iteration, and
IFAsyn-(IV, V) include a validation step.

The paper is organized as follows: Section 2 introduces
some background, Section 3 describes our algorithms, Section 4
compares them with other algorithms, Section 5 analyzes the
influence of the validation step in the results, and finally, Section 6
presents the conclusions.

2. Background

2.1. Problem statement

A discrete MIMO linear control system with additive Gaussian
noise and S sensors is modeled1by Eq. (1), where xt is the state of
the system at time t; zs,t the measurement of sensor s at time t;
ut,tP the control signal applied from the previous time step tP to the

1 Note that when tP is substituted by t −1, the first expression of Eq. (1) becomes
xt = Ft,t−1xt−1 + ut,t−1 + υt,t−1 , which is the usual equation in discrete linear
systems, used to present IFAsyn-I in Besada-Portas et al. (2009, 2007). Our new
notation better suits the aperiodicity of the events supported by the versions of
IFAsyn introduced in this paper. The evaluation of Ft,tP , ut,tP , Qt,tP depends on
the system. For instance, when it is a discretized version of a continuous system
modeled by ẋ(t) = Ax(t) + u(t) + υ(t), the three variables can be calculated as
ut,tP =

 t−tP
0 φ(τ )u(τ )dτ , Ft,tP = φ(t − tP ) and Qt,tP =

 t−tP
0 φ(τ )Q (τ )φT (τ )dτ ,

where x(t) and ẋ(t) are the continuous state and its time derivate at time t , A the
transition matrix, u(t) the control signal at t , Q (t) the covariance of the continuous
zero mean noise υ(t), and φ(t) = eAt .

current t; Ft,tP and Hs,t the transition and measurement matrices,
and υt,tP and νs,t random Gaussian variables with zero mean and
covariances Qt,tP and Rs,t .

xt = Ft,tP xtP + ut,tP + υt,tP
zs,t = Hs,txt + νs,t with s = 1 : S. (1)

The objective of the fusion algorithm is to estimate the cur-
rent system state and covariance (x̂t|t , Pt|t ) given its original
values (x0|0, P0|0), the model parameters and control signals
{Fk,kP ,Qk,kP ,Hs,k,Rs,k, uk,kP }, and the data {ξs,k,a = zs,k|a ≥ k, a ≤

t} measured by sensor s at time k, which have arrived at the fusion
center at time a (a ≥ k), and which is already available (a ≤ t). In
addition, the algorithm is also responsible for detecting and reject-
ing erroneous data produced by failures not modeled in the sensor
covariance matrices.

2.2. Estimating the state with non-delayed data (ξs,t,t )

When the measurements are available without delays (ξs,t,t ),
(x̂t|t , Pt|t ) can be obtained by sequentially using the prediction
and update steps of the KF (Mutambara, 1998). An equivalent
approach, with the same two steps, is the IF (Mutambara, 1998).
They operate in two different spaces, KF in the state space (x̂t|t ,
Pt|t ) and IF in the information space (ŷt|t , Yt|t ), that are related by
the state projection operation {ŷj|l = P−1

j|l x̂j|l, Yj|l = P−1
j|l }(⊥S).

In each iteration they only need their previous time tP space
variables (x̂tP |tP , PtP |tP or ŷtP |tP , YtP |tP ) and the current time t
parameters and data (Ft,tP ,Qt,tP ,Hs,t ,Rs,t , ut,tP , ξs,t,t ). Further, as
the prediction (Eq. (2)) is simpler in the KF and the update of
multiple measurements (Eq. (3)) is easier in the IF (Mutambara,
1998), the estimation problem can be solved by combining KF
predictions, IF updates and state projections. Finally, the IF update
can be divided in a projection of the measurement into the
information space (3)(⊥M ), the accumulation of all the projected
measurements (3)(+), and the assimilation of the accumulated
data with the previous information (3)(A).

x̂t|tP = Ft,tP x̂tP |tP + ut,tP
Pt|tP = Ft,tPPtP |tP F

T
t,tP + Qt,tP


(P) (2)

is,t = HT
s,tR

−1
s,t ξs,t,t , Is,t = HT

s,tR
−1
s,t Hs,t


(⊥M)

it =

S−
s=1

is,t , It =

S−
s=1

Is,t


(+)

ŷt|t = ŷt|tP + it , Yt|t = Yt|tP + It

(A)

 . (3)

To dealwith erroneousmeasurements, a validation test that checks
if ξs,k,a is coherent with the estimate of the state is sometimes
included before the KF/IF update step (Hall, 1992). If the test is
passed, ξs,k,a is used to update the estimate, otherwise it is rejected.
Data association distances (Fukunaga, 1990) are used as validation
tests because they are quick geometric methods to quantify the
disagreement that exists between ξs,k,a and its predicted value
(Hs,kx̂k|kP ). A typical validation test consists in comparing the
obtained distance with a threshold ls. The Mahalanobis distance
ds,k,a in Eq. (4) is often used because it weighs the discrepancy
between ξs,k,a andHs,kx̂k|kP with the inverse of the covariance of the
predicted measurement value (Hs,kPk|kPH

T
s,k + Rs,k). Thus, it grows

with the discrepancy and decreases with the uncertainty. Further,
ds,k,a follows a chi-square distribution χ2

ns of as many degrees of
freedom ns as the number of elements in ξs,k,a. Consequently, the
validation test only rejects valid measurements with a probability
lower than α when the cumulative probability P(χ2

ns < ls) =

1 − α/2. See Johnson and Wichern (1998), for further details.

ds,k,a ≤ ls
ds,k,a = eTs,k,a(Hs,kPk|kPH

T
s,k + Rs,k)

−1es,k,a
es,k,a = (ξs,k,a − Hs,kx̂k|kP ).

(4)
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