
Automatica 47 (2011) 1482–1488

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

A delay decomposition approach to L2–L∞ filter design for stochastic systems
with time-varying delay✩

Huai-Ning Wu a,∗, Jun-Wei Wang a, Peng Shi b,c
a Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University (Beijing University of Aeronautics and
Astronautics), Beijing 100191, China
b Department of Computing and Mathematical Sciences, University of Glamorgan, Pontypridd, CF37 1DL, United Kingdom
c School of Engineering and Science, Victoria University, Melbourne, Vic, 8001, Australia

a r t i c l e i n f o

Article history:
Received 7 December 2009
Received in revised form
22 December 2010
Accepted 17 January 2011
Available online 8 March 2011

Keywords:
Filter design
L2–L∞ performance
Linear matrix inequality (LMI)
Stochastic systems
Time delay

a b s t r a c t

This paper investigates the problem of L2–L∞ filter design for a class of stochastic systems with time-
varying delay. The addressed problem is the design of a full order linear filter such that the error system
is asymptotically mean-square stable and a prescribed L2–L∞ performance is satisfied. In order to
develop a less conservative filter design, a new Lyapunov-Krasovskii functional (LKF) is constructed by
decomposing the delay interval into multiple equidistant subintervals, and a new integral inequality is
established in the stochastic setting. Then, based on the LKF and integral inequality, the delay-dependent
conditions for the existence of L2–L∞ filters are obtained in terms of linear matrix inequalities (LMIs).
The resulting filters can ensure that the error system is asymptotically mean-square stable and the peak
value of the estimation error is boundedby aprescribed level for all possible bounded energydisturbances.
Finally, two examples are given to illustrate the effectiveness of the proposed method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of state and signal estimation is central to a wide
range of applications in signal processing and control. Over the past
decades, considerable attention has been given to methods that
are based on the minimization of the variance of the estimation
error, i.e., the celebrated Kalman filtering approach (Anderson &
Moore, 1979). One of the underlying assumptions of thesemethods
is that the exogenous disturbances impinging on the system under
consideration are stochastic in nature, but have known statistical
properties. In many cases, however, the statistical nature of the
external disturbances is not easily known. To solve this difficulty,
some alternative filtering approaches have been developed, such
as H∞ filtering (Emara-Shabaik, Mahmoud, & Shi, 2010; Green &
Limebeer, 1995; Liu &Wang, 2009; Simon, 2006), L2–L∞ filtering
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(Grigoriadis & Watson, 1997; Palhares & Peres, 2000), and L1
filtering (Nagpal, Abedor, & Poolla, 1994; Tseng, 2006).

In recent years, the stochastic filtering and control problems
with system models expressed by Itô-type stochastic differen-
tial equations have received considerable attention (see, e.g. Ger-
shon, Limebeer, Shaked, & Yaesh, 2001; Hinrichsen & Pritchard,
1998; Xu & Chen, 2002a; Zhang, Chen, & Tseng, 2005, and the
references therein). Such models are encountered in many areas
of application, e.g., population models, nuclear fission and heat
transfer, immunology, etc. (Mohler & Kolodziej, 1980). Meanwhile,
time delay is often encountered in various engineering systems.
In many cases, time delay is a source of instability and perfor-
mance deterioration. The presence of time delay greatly com-
plicates the stochastic filtering and control designs, and makes
them more difficult (Deng, Shi, Yang, & Xia, 2010; Gu, 2001; Gu,
Kharitonov, & Chen, 2003; Hale & Lunel, 1993; Han, 2005; Liu,
Hu, & Tian, 2010; Wu, He, She, & Liu, 2004). Therefore, study-
ing the filtering and control problems of stochastic systems
with time delay is of theoretical and practical importance, and
has attracted a rapid growing interest in the past few decades
(Gao, Lames, & Wang, 2006; Liu, Wang, & Liu, 2007, 2008; Mao,
1996; Mao, Koroleva, & Rodkina, 1998; Xia, Xu, & Song, 2007;
Xu & Chen, 2002b, 2003). In particular, the delay-independent
L2–L∞ filtering results for uncertain stochastic systems with
time-varying delay were presented in Gao et al. (2006). The delay-
dependent L2–L∞ filtering results for stochastic systems with a
constant time delay were given in Xia et al. (2007). Recently, the
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delay-range-dependent L2–L∞ filtering design was also devel-
oped in Zhou, Chen, Li, and Lin (2009) for stochastic systems with
time-varying interval delay. Despite these efforts, there is room
for further improvement. Yet, how to further reduce the conser-
vatism and computational load remains an important and chal-
lenging problem.

More recently, inspired by the discretized Lyapunov functional
method proposed by Gu (2001), the delay decomposition approach
has been developed for stability analyses of linear retarded and
neutral systems (Han, 2009), linear systems with time-varying
delays (Zhang & Han, 2009) and delayed T–S fuzzy systems (Zhao,
Gao, Lames, & Du, 2009), respectively. It has been shown that
this method can lead to less conservative results. Motivated by
this fact, the delay decomposition approach will be employed to
deal with the L2–L∞ filtering design for a class of stochastic
systems with time-varying delay in this work. First, a new
LKF is constructed via delay decomposition, and a new integral
inequality is established in the stochastic setting. Then, using
the LKF and integral inequality, the delay-dependent conditions
for the existence of L2–L∞ filters are obtained in terms of
linear matrix inequalities (LMIs), which can be efficiently solved
using the existing LMI optimization techniques (Boyd, Ghaoui,
Feron, & Balakrishnan, 1994; Gahinet, Nemirovski, Laub, & Chilali,
1995). The resulting filters can ensure that the error system is
asymptotically mean-square stable and the peak value of the
estimation error is bounded by a prescribed level for all possible
bounded energy disturbances. Finally, two examples are given to
show the effectiveness of the proposed method.

Notations: ℜ
n and ℜ

m×n denote the n-dimensional Euclidean
space and the set of real m × n matrix, respectively. For a real
symmetric matrix X , X > 0 (X ≥ 0) means that X is positive
definite (positive semi-definite). The superscript ‘‘T ’’ denotes the
transpose of a matrix or a vector. The symbol ‘‘∗’’ in a matrix
stands for the transposed elements in the symmetric positions.
λmin(·)means theminimal eigenvalue of amatrix. E{·} denotes the
expectation operator. L2[0, ∞) is the space of square-integrable
vector functions over [0, ∞). |·| refers to the Euclidean norm, and
‖·‖ stands for the usual L2[0, ∞) norm.

2. Problem formulation

Consider a class of stochastic time-delay systems described by
Itô-type stochastic retarded functional differential equations

dx(t) = [Ax(t) + Adx(t − d(t)) + Bυ(t)]dt
+ [Mx(t) + Mdx(t − d(t))]dw(t) (1)

dy(t) = [Cx(t) + Cdx(t − d(t)) + Dυ(t)]dt
+ [Nx(t) + Ndx(t − d(t))]dw(t) (2)

z(t) = Hx(t) (3)
x(t) = ϕ(t), ∀t ∈ [−τ , 0] (4)

where x(t) ∈ ℜ
n is the state, υ(t) ∈ ℜ

m is the disturbance
input which belongs to L2[0, ∞), y(t) ∈ ℜ

p is the measured
output, z(t) ∈ ℜ

q is the signal to be estimated, and w(t) is a
one-dimensional Brownian motion satisfying E{dw(t)} = 0 and
E{dw2(t)} = dt . A, Ad, B, M , Md, C , Cd, D, N , Nd, and H are known
constant matrices with appropriate dimensions. The state delay
d(t) is a time-varying differentiable function satisfying 0 ≤ d(t) ≤

τ and
ḋ(t) ≤ µ < 1, where τ > 0 and µ ≥ 0 are constants. The

initial condition φ(·) is a vector-valued initial continuous function
defined on the interval [−τ , 0].

Definition 1. The systems (1)–(4) with υ(t) = 0 are said to be
mean-square stable if for any ε > 0, there exists a δ > 0 such that
E{|x(t)|2} < ε, t > 0when supt∈[−τ ,0] E{|φ(t)|2} < δ. Moreover, if

limt→∞ E{|x(t)|2} = 0, then the system is said to be asymptotically
mean-square stable.

Assumption 1. The systems (1)–(4) with υ(t) = 0 are asymptoti-
cally mean-square stable.

Suppose the following full order linear filter is proposed to es-
timate the signal z(t):

dx̂(t) = AF x̂(t)dt + BFdy(t), x̂(0) = 0 (5)

ẑ(t) = CF x̂(t) (6)

where x̂(t) ∈ ℜ
n is the filter state, AF , BF and CF are appropriately

dimensioned filter matrices to be designed.
Define the estimation error by e(t) = z(t) − ẑ(t). Then from

(1)–(6), the following state-space equation for the estimation er-
ror is obtained:

dx̃(t) = [Āx̃(t) + ĀdKx̃(t − d(t)) + B̄υ(t)]dt
+ [M̄x̃(t) + M̄dKx̃(t − d(t))]dw(t) (7)

e(t) = H̄x̃(t) (8)

x̃(t) = φ̃(t), ∀t ∈ [−τ , 0] (9)

where x̃(t) = [xT (t) x̂T (t)]T , φ̃(t) = [φT (t) 0]T , and

Ā =

[
A 0

BFC AF

]
, Ād =

[
Ad

BFCd

]
, B̄ =

[
B

BFD

]
,

M̄ =

[
M 0
BFN 0

]
, M̄d =

[
Md
BFNd

]
, H̄ =


H −CF


,

K =

I 0


.

For convenience, we introduce the following definition:

Definition 2. Given a scalar γ > 0, the error systems in (7)–(9)
are said to be asymptotically mean-square stable with the L2–L∞

attenuation level γ if the error systems in (7)–(9) with υ(t) = 0
are asymptotically mean-square stable, and the estimation error
under zero initial condition (i.e., φ(t) = 0, t ∈ [−τ , 0]) satisfies
‖e‖E∞ < γ ‖υ‖ for all nonzero υ(t) ∈ L2[0, ∞), where ‖e‖E∞ ,

supt


E{|e(t)|2}.

The problem under consideration in this paper is to design a
filter of the form (5)–(6) for the systems (1)–(4) such that the error
systems in (7)–(9) are asymptotically mean-square stable with a
prescribed L2–L∞ attenuation level γ . Such a filter is regarded as
a stochastic L2–L∞ filter or an energy-to-peak filter.

The following lemma will be useful in the sequel.

Lemma 1. Let n-dimensional vector functions x(t), ϕ(t), and g(t)
satisfy the stochastic differential equation

dx(t) = ϕ(t)dt + g(t)dw(t) (10)

where w(t) is a one-dimensional Brownian motion. For any constant
matrix Z ≥ 0 ∈ ℜ

n×n and scalar h > 0, if the following integration
is well defined, then

−h
∫ t

t−h
ϕT (s)Zϕ(s)ds ≤

[
x(t)

x(t − h)

]T [
−Z Z
Z −Z

] [
x(t)

x(t − h)

]
+ 2

[
x(t)

x(t − h)

]T [
−Z
Z

] ∫ t

t−h
g(s)dw(s). (11)

Proof. It follows from (10) that∫ t

t−h
ϕ(s)ds = x(t) − x(t − h) −

∫ t

t−h
g(s)dw(s). (12)
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