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Received 24 March 2006; received in revised form 6 April 2007; accepted 16 October 2007
Available online 5 March 2008

Abstract

For robustness analysis with integral quadratic constraints, we formulate a new positivity condition on the solution of the corresponding linear
matrix inequality which is necessary and sufficient for nominal stability of the underlying system. The application of this technical result is
illustrated by a complete solution of the L2-gain and robust H2-estimator design problems if the uncertainties are characterized by dynamic
integral quadratic constraints.
c© 2008 Elsevier Ltd. All rights reserved.

Keywords: IQC; Dynamic multipliers; Guaranteed stability; LMI-based synthesis; Robust estimation

1. Introduction

Integral quadratic constraints (IQCs) provide a general
framework for stability analysis of feedback interconnections
of LTI plants and uncertainty blocks as shown in Fig. 1.
Many well-known results, such as robust stability analysis
against structured time-varying parametric or dynamic non-
linear uncertainties, can be viewed as special cases of the IQC
approach. Although IQCs first appeared in different guises in
the 1960s and 70s, mainly in the works of Yakubovich, a
unifying framework was introduced in Megretski and Rantzer
(1997). Since then research on IQCs has mostly focused on
finding suitable multipliers for certain types of perturbation
blocks such as an uncertain time-delay, multiple non-linearities,
or rate-bounded parameters (D’Amato, Rotea, Megretski, &
Jönsson, 2001; Jun & Safonov, 2002; Megretski & Rantzer,
1997).

If the nominal system is stable, verification of robust
stability by IQCs can be cast, through the use of the
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Kalman–Yakubovich–Popov (KYP) lemma, as optimization
problems which involve linear matrix inequality (LMI)
constraints (Rantzer, 1996). Therefore, the IQC framework
leads to computationally tractable conditions for checking
robust stability.

However, the literature on employing the IQC framework
for robust synthesis is scarce. One of the involved delicacies is
related to guaranteeing nominal stability of the corresponding
closed-loop system. Indeed, as a key ingredient in LMI-
based synthesis approaches (such as H∞- or H2-control), it
is clearly understood how to enforce closed-loop stability by
just imposing a positivity condition on the solution of the
LMIs which specify performance. This fails for dynamic IQC
performance specifications (Balakrishan, 2002).

The main technical goal of this paper is to formulate a
new positivity condition on the LMI reformulation of the IQC
frequency-domain inequality (FDI) which is both necessary
and sufficient for nominal stability of the underlying system.
As another key contribution, we provide a state-space analog
of the frequency-domain algorithm given in Goh (1996)
for the construction of a so-called IQC-factorization, and a
clear understanding of the relation of these factorizations
to the LMIs as they result from the KYP lemma. Initial
results indicate the relevance of these insights for obtaining
a complete solution of the gain-scheduling synthesis problem
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Fig. 1. Configuration for analysis.

with dynamic IQCs (Köse & Scherer, 2006). Despite its rather
technical proof, the actual stability characterization is easy
to formulate, and its relevance is demonstrated in this paper
by providing solutions of the robust L2-gain and robust H2-
estimation problems for uncertain LFT systems.

Several results on robust estimation using multipliers
are available in the literature (de Souza & Trofino, 2000;
Geromel, 1999; Geromel & de Oliveira, 2001; Li & Fu, 1997;
Ravuri & Asada, 2000; Sun & Packard, 2005), but none
of these allow the use of dynamic IQCs, which precludes
to decrease conservatism or to handle interesting classes of
uncertainties/non-linearities. Only the recent paper by Scorletti
and Fromion (2006) addresses dynamic multipliers, but they
are limited to the D/G-structure. Robust estimation for
linear parameter-varying systems using parameter-dependent
Lyapunov functions has also been investigated (Barbosa, de
Souza, & Trofino, 2005; Geromel, de Oliveira, & Bernussou,
2002; Tuan, Apkarian, & Nguyen, 2003). However, apart from
using particularly structured Lyapunov functions, these results
invariably lead to parameter-dependent filters which require on-
line measurement of the parameters for their implementation.
Our stability characterization allows us to design estimators
for LFT systems where the uncertainty is described by general
dynamic multipliers and without the need for on-line parameter
measurements.

The paper is structured as follows. Section 2 contains a brief
recap of the IQC-theory and the corresponding LMIs. Section 3
comprises the two main technical results. In Section 4, we
demonstrate the application of our stability characterization to
robust estimation, both with the L2-gain and a generalization
of the H2-norm as a performance measure. The numerical
example in Section 5 demonstrates how the proposed solution
reduces conservatism. Appendices A–E contain all the proofs.

2. Recap of IQC robust stability analysis

Suppose that G is a stable LTI transfer matrix, and that we
are interested in verifying the stability of the interconnection of
G with a bounded, causal uncertainty block ∆ as in Fig. 1. With
a matrix-valued function Π = Π ∗ that is essentially bounded
on the extended imaginary axis C0, recall that ∆ : L2[0,∞) →

L2[0,∞) is said to satisfy the IQC defined by Π if∫
∞

−∞

(?)∗Π (iω)
(
v̂(iω)

∆̂v(iω)

)
dω ≥ 0 ∀v ∈ L2[0,∞), (1)

where ̂ denotes the Fourier transform. Note that (?) is used
for expressions that can be deduced by symmetry. Once the
characteristics of ∆ have been described through an IQC, the
stability of the feedback interconnection of G and ∆ in Fig. 1
can be verified as follows.

Theorem 1 (Megretski & Rantzer, 1997). Suppose G is stable
and

(i) the feedback interconnection of τ∆ and G is well-posed
for all τ ∈ [0, 1],

(ii) τ∆ satisfies the IQC defined by Π for all τ ∈ [0, 1],
(iii) G satisfies(

G
I

)∗

Π
(

G
I

)
≺ 0 on C0. (2)

Then, the feedback interconnection of G and ∆ is stable.

From now on we restrict ourselves to practically important
real-rational multipliers Π that are bounded on C0. If all
conditions in Theorem 1 are satisfied for Π , they hold as well
for Π + ε I with some sufficiently small ε > 0. Since (ii)
in Theorem 1 implies Π11 � 0 on C0, we can hence assume
without loss of generality that

Π11 � 0 on C0. (3)

Since Π is bounded, one can easily construct a symmetric
M and a proper and stable transfer matrix Ψ such that

Π = Ψ∗MΨ . (4)

Since Ψ is typically tall, we stress that such factorizations
are highly non-unique. Now partition the columns of Ψ
as (Ψ1 Ψ2) compatibly with the rows of col(G, I ). If
(AΨ , (BΨ1 BΨ2),CΨ , DΨ ) is a stable state-space realization
of Ψ , we can determine a Kalman decomposition of (AΨ , BΨ1)

and continue with the realizations

G = , (Ψ1 Ψ2) = (5)

where A1, A2 are stable and (A1, B1) is controllable. Then
Ψ1G + Ψ2 admits the state-space description

=: . (6)

Moreover, if A has no eigenvalues in C0, the FDI (2) is
equivalent to the existence of some X = XT for which I 0
A B
C D

T 0 X 0
X 0 0
0 0 M


︸ ︷︷ ︸

=:M(X,M)

 I 0
A B
C D

 ≺ 0. (7)

Since M is indefinite, stability of A neither implies, nor is
implied by positive definiteness of X in general (Balakrishan,
2002). However, characterizing stability of A or (equivalently)
of A by some suitable condition on X is a key ingredient for
all LMI-based controller synthesis techniques (see e.g. Scherer,
Gahinet, and Chilali (1997) and references therein) in order to
guarantee closed-loop stability.
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