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A B S T R A C T

This paper presents a general framework to assess the resilience of large and complex metro networks by
quantitatively analyzing its vulnerability and recovery rapidity within unifying metrics and models. The con-
nectivity performance of network is indicated by the network efficiency. The resilience of a metro network can
be associated to the network performance loss triangle over the relevant timeline from the occurrence of a
random or intentional disruption to full recovery. The proposed resilience model is applied to the Shanghai
metro network with its 303 stations and 350 links as an example. The quantitative vulnerability analysis shows
that the Shanghai metro with its L-space type of topology has a strong robustness regarding connectivity under
random disruption but severe vulnerability under intentional disruption. This result is typical for small-world
and scale-free networks such as the Shanghai metro system, as can be shown by a basic topological analysis.
Considering the case of one disrupted metro station, both the vulnerability and resilience of the network depend
not only on the node degree of the disrupted station but also on its contribution to connectivity of the whole
network. Analyzing the performance loss triangle and the associated cost from loss of operational income and
repair measures, an appropriate recovery strategy in terms of the optimum recovery sequence of stations and the
optimum duration can be identified in a structured manner, which is informative and helpful to decision makers.

1. Introduction

Urban rail transit systems (named subsequently as metro systems)
offer an effective solution for addressing transportation problems in
cities by significantly increasing the capacities of public transportation.
This benefit has driven an expeditious development in the construction
and operation of metro systems in many metropolitan cities. As the
number of metro lines increases, metro systems often grow to a large
and complex network scale. For example, Shanghai has a metro system
with 303 stations and 350 tunnels over 617 km. Although a large-scale
metro network makes public transportation attractive and convenient,
any accident impacting this mega system would greatly affect not only
the serviceability of this critical infrastructure but also the safety of
passengers. For example, in September of 2011, a signal failure oc-
curred in a station of metro line 10 in Shanghai, China. Two metro
trains crashed in a tunnel due to the loss of signal causing 271 injured

passengers and 30-h halt of the whole metro line (Mu, 2011). In view of
these circumstances, the safety of metro networks is a key concern that
requires an enhanced understanding of these networks through ex-
tensive research.

Quite a number of studies have been carried out by analyzing net-
works for the safety of metro systems in particular with the topo-
graphical mapping modelling (Crucitti et al., 2003; Derrible and
Kennedy, 2010; Watts and Strogatz, 1998; Zhang et al., 2013; Zhang
et al., 2011). Essentially, a metro network can be mapped into a to-
pological graph with the simplification of metro tunnels and metro
stations, respectively, as links and nodes used in topology (Zhang et al.,
2013). Topological analysis, i.e., consisting of nodes and links, the path
length and cluster coefficient of a network provides an effective and
logical basis to characterize the safety of a transportation network
(Derrible and Kennedy, 2010). Watts and Strogatz (1998) proposed a
model termed small-world network for complex network analysis. The
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small-world network system is typically highly clustered and yet have
small characteristic path lengths, which conceptually shows a robust
connectivity of the nodes for a network subjected to any disruption.
Barabasi and Albert (1999) investigated large-scale networks and found
that the node connectivity in those networks, i.e., network connectivity,
often follows a scale-free power-law distribution. This result suggests
that the connectivity of the network is robust under a random failure
yet is vulnerable under an intentional attack.

The above network assessment models, however, are mainly qua-
litative with conceptualized measures that do not offer a rigorous
comparison of safety levels among networks. In this respect, network
analysis with quantitative measures of robustness and vulnerability is
thus helpful for examining the safety level of a specific network. Albert
et al. (2000) quantitatively analyzed the robustness of metro networks
in the event of an accident. The robustness of a metro network here is
expressed in terms of the residual network connectivity after the dis-
ruption of nodes in the network. Crucitti et al. (2004) also studied the
robustness of two types of large-scale networks, i.e., a random network
and scale-free network, for the performance of network connectivity.
These two studies revealed that scale-free networks have a high ro-
bustness index under random attacks but a low robustness index under
intentional attacks. Recently, a similar analysis of the robustness of
metro networks was also reported by Zhang et al. (2011) and Yang et al.
(2015). Additionally, disrupting a large-scale metro network by an ac-
cident affects not only the robustness but also the subsequent recovery.
Recovery profiles over time greatly affect the economic and social
wellbeing outcomes that are of great concern to metro owners. The
rapid recovery of a network’s connectivity from a disrupted state to the
normal state is a key concern among engineers (Francis and Bekera,
2014). However, a robustness assessment focuses only on the network
safety in the event of an accident without considering recovery. In the
context of recovery, robustness and vulnerability analyses are still in-
sufficient to offer a rational recovery strategy in terms of recovery se-
quencing and duration for stations and tunnels in a metro network.

A comprehensive safety assessment model includes both the net-
work robustness and the recovery profile as provided by Ayyub (2014).
In this context, the concept of “resilience” would provide an appropriate
solution to cover both the robustness and recovery in a single model for
safety evaluation of a network system (Ayyub, 2015; Bruneau et al.,
2003). Resilience, according to U. S. Presidential Policy Directive (PPD-
21, 2013), means “the ability to prepare for and adapt to changing con-
ditions and withstand and recover rapidly from disruptions.” Fundamen-
tally, the resilience of a system is often quantified by relating it to a

resilience loss triangle represented by the difference between a normal
performance evolution curve and a disrupted performance curve along
with the time duration of disruption and recovery stage (Frangopol and
Soliman, 2015). A resilient system can be quantitatively defined by the
system with a minimized performance loss triangle, also termed resi-
lience loss triangle. The optimized recovery sequences and duration
necessary to minimize the resilience triangle thus offer a basis for de-
fining recovery strategies after disruptions (Zhang and Wang, 2016).

The concept of resilience as used herein was initially and formally
introduced by Holling (1973) for ecologic systems. Later on, a broader
interest in resilience was triggered by the 2001 World Trade Center
attack in the United States. Typical uses of resilience analysis has
covered mostly water resource systems (Hashimoto et al., 1982), power
networks (Henry and Ramirez-Marquez, 2012) and the seismic hazards
for bridges (Dong and Frangopol, 2015). Resilience analysis for urban
rail transit systems, however, has been quite limited. On the other hand,
resilience analysis is of great necessity and importance in order to
identify optimized recovery sequences after network disruptions. One
might realize that a metro network, to some degree, is similar to the
power network but with a different topological space of nodes and links
and a different recovery philosophy in terms of sequence and timing.
These similarities can be exploited in the development of respective
approaches. In addition, the current practice of recovery is purely based
on empirical judgement without a rational model to obtain an optimum
repair duration and costs during the recovery stage (Huang and Zhang,
2016; Zhang et al., 2018).

This paper provides a general framework for the resilience analysis
of large-scale metro network systems that offers an immediate basis for
identifying both the best recovery sequences to minimize the perfor-
mance loss and the best repair duration to minimize the costs associated
with disruption and recovery. The performance of a metro network in
this paper refers to the connectivity of stations in an integrated metro
network (hereafter termed network connectivity). The development of
this framework requires the introduction of several concepts and
models in the context of metro networks as follows:

1. Basic mapping of a metro network into a topological graph;
2. Defining and measuring vulnerability and robustness of the topo-

logical metro network;
3. Developing resiliency metrics based on the topological metro net-

work;
4. Accounting for costs during the disruption and recovery stage.

Nomenclature

Notations

G topological vector for metro network
S node set of a metro network
si node in a metro network
N node number in a metro network
E link set of a metro network
eij link between node si and sj in a network
A correlation matrix for a network
aij correlation between node si and node sj
dij path length between node si and sj
L characteristic path length of a network
D diameter of a network
Ci clustering coefficient for a node in a network
C clustering coefficient of a network
P(k) distribution of node degree for a network
Ef network efficiency
V vulnerability of topological metro network

Q(t) system performance of a metro network at time t
t0 time moment when failure or attacks occur to the metro

network
t1 time moment when the metro network is fully recovered

from a disruption
th time duration from the disruption moment t0 to the re-

covered moment t1
Re resilience index for metro network
Ctotal cost during the system disruption
Ctotal, PV present value equal to the total cost at time of recovery
Cdisruption cost referred to the loss of system performance
Cticket cost referred to the income loss of metro ticket
Vol passenger volume of the metro network
Voln initial passenger volume of a metro network in normal

condition
Vold reduced passenger volume of a metro network after dis-

ruption
VolLoss total loss of the passenger volume during the disruption
Crepair cost related to the implementation of repair measures
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