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Abstract

In this paper, the simultaneous estimation of the input and output frequencies of nonlinear systems is considered. As the output frequencies are
generated from the input frequencies, and are integer combinations of these frequencies, it is shown in this paper that the simultaneous estimation
of both the input and output frequencies can therefore be formulated as a constrained estimation problem. First, the constrained Cramér–Rao
lower bound, an important general property of any unbiased estimator, is derived. The procedure and algorithm for estimating the input and output
frequencies are devised based on the periodogram method. Numerical examples are presented to illustrate the performance and implementation
of the proposed estimation procedure and algorithm.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The estimation of the frequencies of sinusoidal functions
from a finite number of noisy discrete measurements has
attracted great attention. A number of techniques have been
developed and are available in the literature, e.g., the maximum
likelihood method (Rife & Boorstyn, 1976), the nonlinear least
squares (Stoica & Nehorai, 1988), the linear prediction (So,
Chan, Chan, & Ho, 2005), the periodogram method (Quinn &
Hannan, 2001), MUSIC (Schmidt, 1986) and ESPRIT (Roy &
Kailath, 1989).

It is well known that there exists a simple relationship
between the input and the output frequencies of a linear
system. However, this relationship becomes more complex for
nonlinear systems, as it depends on the order of nonlinearity,
which for simplicity is defined as the highest order of the
polynomial approximation of the nonlinearity of the system.
For these nonlinear systems, the output frequencies are an
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integral combination of the input frequencies, as the output
is generated by the input (Lang & Billings, 2000). If the
input frequencies and the order of the nonlinearity are
known, then the output frequencies can be readily derived.
However, if the input frequencies and/or the order of the
nonlinearity are unknown, as is often the case in practice,
it is necessary to estimate the input and output frequencies
from the measurements of the input and output. A common
approach is to estimate the frequencies of the input using only
the measurements of the input, and that of the output using only
the measurements of the output without taking into account
the relationship between the input and output frequencies. It
is shown in this paper that estimating simultaneously both the
input and output frequencies for a nonlinear system excited by
multi-tone sinusoidal signals is more accurate than estimating
these frequencies separately.

In this paper, the simultaneous estimation of both the
input and output frequencies is formulated as a constrained
estimation problem. A three-step procedure is proposed to solve
this estimation problem. First, initial estimates of the input and
output frequencies are obtained by the periodogram method
(Quinn & Hannan, 2001), and from which the order of the
nonlinearity of the system is estimated. The final estimates of
the input and output frequencies are obtained by maximizing
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an objective function using the simplex search method. As
the Cramér–Rao lower bound (CRLB) is the lower bound of
the variance of any unbiased estimator, it is used here as a
benchmark for comparing the performance of the proposed
method and methods that estimate these frequencies separately.
It is shown in this paper that the CRLB for the proposed method,
referred simply as the constrained CRLB in the following
analysis, is smaller than that estimating these frequencies
separately, indicating better estimates are obtained using the
proposed method.

This paper is organized as follows. In Section 2, the
preliminary assumptions and results for the estimation of the
input and output frequencies are presented. This is followed
by a formal definition of the problem in Section 3. The CRLB
for both separate and simultaneous estimation of the input and
output frequencies are given in Section 4. The proposed three-
step frequency estimation procedure is described in Section 5.
A numerical example is presented in Section 6 to illustrate the
performance of the proposed method.

2. Preliminaries

Consider an asymptotically stable continuous single-input
single-output nonlinear system given by the state space
equation (Chua & Ushida, 1981),

ẋ = f (x, ū)

ȳ = Cx
(1)

where x is the state vector with appropriate dimension, ȳ is the
output, and ū is the R-tone sinusoidal input. Let ū be given by,

ū(t) = αT sin(ωct + ϕ) (2)

where, α ∈ R R×1, ωc ∈ R R×1
+ and ϕ ∈ (0, π)R×1 are

respectively the amplitude, frequency and phase angle of the
input. The following assumption is made, which is a slight
relaxation of the asymptotically almost periodic assumption
proposed in Chua and Ushida (1981).

Assumption 1. For a given initial state x0, system (1) has a
unique asymptotically almost periodic solution,

x(t) = xss(t), as t → ∞. (3)

It follows from Assumption 1 that the steady-state output of
(1) is,

ȳ(t) = Cxss(t) = β0 + βT sin(λct + ψ) (4)

where β0 is a constant, β ∈ RS×1, λc ∈ RS×1
+ and ψ ∈

(0, π)S×1 are respectively the amplitude, frequency and phase
angle of the output. Since the system is assumed to be
asymptotically stable, the steady-state output consists of S-tone
sinusoids completely generated by the R-tone sinusoidal input.
Although S is usually much larger than R, and can even be
infinity, it is often set to some arbitrarily large value in practice.

If the input and output frequencies ωc and λc are unknown,
they are estimated from noisy discrete measurements of the

input and output obtained at a sampling interval of τ . Denote
the noisy input and output by u(t) and y(t) respectively,

u(n) = ū(nτ) + εu(nτ)

y(n) = ȳ(nτ) + εy(nτ)
n = 1, . . . , N (5)

where εu(t) ∼ N (0, σ 2
u ) and εy(t) ∼ N (0, σ 2

y ) are Gaussian
white noises. Asωc and λc can vary from 0 to infinity, it is more
convenient to transform the estimation problem as follows. Let
ω = τωc and λ = τλc. Further, if τ is chosen satisfying
the sampling theorem (Chen, 2004), then ω ∈ (0, π)R×1 and
λ ∈ (0, π)S×1. As τ is known, the problem of estimating ωc
and λc is now transformed to one that estimates ω and λ, both
of which are within the range of 0 and π .

It is common to estimate ω from u, and λ from y (So et al.,
2005; Stoica, Moses, Friedlander, & Soderstrom, 1989). As
shown in this paper, the estimate of ω and λ can be greatly
improved if both u and y are used by taking into account
the relationship between the input and output frequencies. It
is well known that the sth output frequency λs is an integer
combination of the input frequency ω (Chua & Ushida, 1981),
as follows,

λs =

∣∣∣∣∣ R∑
r=1

msrωr

∣∣∣∣∣ (6)

where |·| denotes the absolute value, and msr is an integer given
by,

msr = vr − v−r (7)

and vr and v−r are respectively the r th and −r th element of
the “frequency-mix vector”, v (Lang & Billings, 2000; Yue,
Billings, & Lang, 2005):

v = [v−R, . . . , v−1, v1, . . . , vR]. (8)

Given a nonlinear system up to pmax order of nonlinearity,
for the pth-order nonlinearity, there is a set of v satisfying
the following equality, where the order of the nonlinearity is
regarded as the order of the polynomial approximation of the
input and output relationship of the nonlinear system at steady
state,

{v : v−R + · · · + v−1 + v1 + · · · + vR = p}. (9)

Rewrite (6) into matrix form,

λ = Mω (10)

where λ = [λ1, λ2, . . . , λS]
T, ω = [ω1, ω2, . . . , ωR]

T, mi =

[mi1, mi2, . . . , mi R] is a row vector of M, sign (.,.) is the sign
of the product of the arguments, and M, the “Combination
Matrix”:

M =


sign(m1,ω)m1
sign(m2,ω)m2

...

sign(ms,ω)ms

 (11)

where M ∈ Z S×R is an integer matrix. An example is now
presented to illustrate how M is constructed.
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