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a b s t r a c t

Fast and efficient routing of emergency responders during the response to mass casualty incidents is a
critical element of success. However, the predictability of the associated travel times can also have a
significant effect on performance during the response operation. This is particularly the case when a deci-
sion support model is employed to assist in the allocation of resources and scheduling of operations, as
such models typically rely on an ability to make accurate forecasts when evaluating candidate solutions.
In this paper we explore how both routing efficiency and uncertainty in travel time prediction are
affected by the routing strategy employed. A simulation study is presented, with results indicating that
a routing strategy which allows responders to select routes autonomously, as opposed to being instructed
via a central decision support program, leads to improvement in overall performance despite the associ-
ated increase in uncertainty in travel time prediction.
� 2014 Elsevier Ltd. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).

1. Introduction

A recent study (Zhou et al., 2011) has identified the ‘‘application
of modern logistics technology’’ as a critical success factor in emer-
gency management. One element of this application can be seen in
the routing of emergency responders during a Mass Casualty Inci-
dent (MCI), which has a clear potential to impact on the quality of
the overall response operation. This is particularly the case in the
response operations of the Ambulance Service, which will involve
making many journeys from the affected area(s) to appropriate
hospitals. Effective routing decisions in making these journeys will
lead to shorter travel times, which will in turn lead to a lower level
of suffering and, potentially, a reduction in the number of fatalities.

The use of GPS technology to assist in making effective routing
decisions is now commonplace, in the emergency services and
more generally. However, the utility of a GPS system may be signif-
icantly affected in the period immediately following an MCI, when
high levels of disruption (caused directly or indirectly by the inci-
dent) can lead to significant uncertainty in the time it will take to
travel along a certain route (Jiang et al., 2012). The implication is
that a purportedly optimal route specified by a GPS system, based
on knowledge of the transport network under regular conditions,
may in fact be sub-optimal in the disrupted disaster environment.
In such cases it could be argued that routing decisions should be

made with little regard to the guidance offered by the GPS system,
with responders instead making decisions themselves based on
their prior knowledge of the area and the knowledge acquired as
they explore the now disrupted network. This is indeed what hap-
pened during the response to the Haiti earthquake, where it has
been noted that drivers had ‘‘no maps with updated information
and had to discover the best routes by driving and exploring’’ (de
la Torre et al., 2012).

Considering the broader problem of resource allocation in MCI
response, it has been noted (Altaya and Green, 2006; Simpson
and Hancock, 2009) that mathematical models and optimisation
algorithms could potentially provide decision support to emer-
gency response personnel, leading to more efficient response oper-
ations. However, it is common for such models to rely on an ability
to predict the outcome of any given response operation plan. Given
this ability, the model can consider a larger decision problem than
is feasible for emergency response personnel, accounting for deci-
sions both immediate and in the near future, which in turn allows
for better plans to be formulated.

Unknown levels of disruption in a transport network will pres-
ent a significant challenge to any optimisation model of this type,
as it will lead to difficulties in predicting travel times and, conse-
quently, the outcome of the response plan. In this context, it may
be beneficial to rely on a centralised specification of routes,
acknowledging that the routes themselves may be sub-optimal,
in order to improve prediction abilities. If the optimisation model
were to release control over routing decisions to the emergency
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responders themselves, this would introduce uncertainty over
route choice, thereby making the task of prediction more challeng-
ing. We hypothesise that this increase in uncertainty, and corre-
sponding reduction in utility of the decision support program,
could eclipse any benefit gained through better routing and subse-
quently shorter travel times.

In this paper we build on previous work which has introduced a
scheduling-based decision support program for MCI response and
demonstrated its sensitivity to uncertainty in temporal parameters
(Wilson et al., 2012). Having previously ascertained that disruption
to the transport network can be a significant source of such uncer-
tainty (Wilson et al., 2013), in this paper we describe and evaluate
routing policies designed to mitigate against these problems.

1.1. Routing in decision support systems for MCI response

Transport networks are not always explicitly modelled within
decision support programs designed for disaster response. For
example, Wex et al. (2012) present a scheduling model designed
to assist in the allocation of response units to incidents, taking as
input the travel times associated with each possible journey
response units may make. Similarly, a travel time matrix describ-
ing the relation between points of interest is taken as problem
input by Zhang et al. (2012) in the model of emergency responder
allocation. This can be contrasted with work such as that of Yi and
Kumar (2007) and Haghani and Oh (1996), where the transport
network is represented as a graph, with each edge assigned a
parameter describing the time needed to traverse it. Where such
graphical representations of transport networks are included, it is
common to assume their structure and parameters are determinis-
tic and constant over time. This is true both of models designed to
assist in commodity distribution over a large geographic area, such
as those presented in Chang et al. (2007), Sheu (2007), Lin et al.
(2011), and Tzeng et al. (2007), decision support programs using
a scheduling formulation to assign tasks to emergency responders
(Rolland et al., 2010; Wilson et al., 2012), and routing based formu-
lation for the support of casualty transportation and evacuation
(Chiu and Zheng, 2007; Yi and Ozdamar, 2007). By assuming all
necessary information regarding the transport network is readily
available, routing decisions can be made with confidence using a
standard shortest path algorithm.

It is common in past work to use a reduced simplification of the
actual transport network when representing it as a graph, an
approach which can help avoid excessive computational burden.
In the problem scenarios considered by Yi and Kumar (2007), for
example, the most complex network considered contains 80 nodes
connected by 1600 edges. Considering a geographic area large
enough to encompass six cities in Turkey, the model presented
by Ozdamar et al. (2004) represents the transport network using
12 nodes and 12 links, based upon motorway infrastructure. In
contrast, a dense network comprised of 34,890 nodes and 43,445
links is used in the test problem considered by Jotshi et al.
(2009), with a hierarchial decomposition employed to assist route
computation in a timely manner.

Uncertainty in the disruption of the transport network has been
incorporated to a limited extent using stochastic programming for-
mulations. Examples include (Barbarosoglu and Arda, 2004; Mete
and Zabinsky, 2010; Rawls and Turnquist, 2010), which consider
a finite number of scenarios, each with assigned probability and
associated network parametrization. Uncertainty is also acknowl-
edged in the work of Jotshi et al. (2009), which extends the ambu-
lance allocation model presented by Gong and Batta (2007) by
including a data fusion step to estimate the level of damage and
disruption on each road link. A solution methodology for finding
optimal paths in a disrupted network following a disaster is pre-
sented in Zhang et al. (2013). The authors employ the network

representation described by Yuan and Wang (2009), where the tra-
vel time associated with each edge of the transport network is
assumed to increase over time in a manner which reflects its prox-
imity to the disaster. A dynamic transport network structure is also
modelled in the work of Fiedrich et al., 2000, with nodes and edges
being added or taken away to reflect the impact of both the disas-
ter and the response operation.

1.2. Contribution of this paper

In recent reviews of optimisation models for emergency logis-
tics (Caunhye et al., 2012; de la Torre et al., 2012) it has been noted
that there has been little research in the area employing stochastic
models. Given the potential for an MCI to disrupt the transport net-
work, directly or indirectly, and thus lead to uncertainty in routing
and travel time prediction, this is clearly an area which merits fur-
ther research. While some authors have acknowledged the possi-
bility of disruption to the network and the subsequent
uncertainty, it remains unclear whether or not this uncertainty will
ultimately reduce the utility of a decision support program, and
how any such effect depends on the choice of routing policy.

The remainder of this paper will be structured as follows. In
Section 2 we will briefly describe a previously published schedul-
ing based decision support program designed to optimise resource
allocation in MCI response. In Section 3 we go on to present a sim-
ulation routine designed to generate random levels of disruption to
the transport network representative of the problem environment.
A number of potential routing policies will be introduced in Sec-
tion 4, with details provided on the associated simulation of route
choice and prediction of travel time. These policies will be com-
pared using a Monte Carlo approach in Section 5, allowing for
the uncertainty in the problem to be fully captured.

2. A scheduling model for disaster response

In this paper we employ the multi-objective optimisation
model described in Wilson et al. (2013). The model is of a task
scheduling nature, similar to the Flexible Job Shop scheduling
Problem (FJSP) (Brandimarte, 1993). Specifically, each casualty in
the problem is associated with a number of tasks which must be
carried out by the available emergency responders. The tasks asso-
ciated with each casualty will always include a transportation task,
which requires an ambulance responder and involves the transpor-
tation of the casualty from the incident site i to a chosen hospital h.
Other tasks include treatment tasks and rescue tasks, and have a
specific order in which they must be carried out in. This leads to
a dependency structure in the scheduling model. A solution is
defined by an ordered allocation of tasks to emergency responder
units, together with a mapping from the set of casualties to the
set of hospitals. Given such a solution, the first stage in its evalua-
tion is the creation of a corresponding schedule by estimating the
time at which each task will start and finish. This involves estimat-
ing the duration of each task, respecting the dependency relations
which exist between them, and estimating associated travel times.

An example segment of a response schedule is given in Fig. 1,
where the initial schedule of two responders r1 and r2 are shown.
In addition to displaying the tasks to be carried out, movement
between different areas in the MCI environment are shown.

As can be seen in Fig. 1, the accurate estimation of travel times
is an essential part of computing an accurate schedule. The objec-
tive functions which measure the quality of a given schedule pri-
marily use the estimated start and end times of tasks in their
computations, implying that the accuracy of travel time estimation
will directly affect the model’s ability to accurately compare solu-
tions and select one of high quality.
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