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a b s t r a c t

This paper presents a new approach to constructive output feedback robust nonlinear guaranteed cost
controller design. The approach involves a class of controllers which include copies of the slope bounded
nonlinearities occurring in the plant. Dynamic multipliers are introduced to exploit these repeated
nonlinearities. The linear part of the controller is synthesized using minimax LQG control theory.
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1. Introduction

This paper presents an approach to constructive output
feedback robust nonlinear guaranteed cost controller design based
on the use of Integral Quadratic Constraints (IQCs) and dynamic
multipliers which exploit repeated slope bounded nonlinearities.
These dynamic multipliers and IQCs are derived from the results
of D’Amato, Rotea, Megreteski, and Jonsson (2001) and Kulkarni
and Safonov (2002). The results are limited to nonlinear systems
with known slope bounded nonlinearities of the type considered
in Ref. Arcak and Kokotovic (2001). This means that the known
nonlinearities must be globally Lipschitz. However, the unknown
nonlinearities, which are treated as uncertainties satisfying IQCs
can be more general; e.g., see Petersen, Ugrinovskii, and Savkin
(2000).

The approach presented provides a systematicmethodology for
constructing robust nonlinear controllers for a class of uncertain
nonlinear systems. The approach is based on the minimax LQG
theory of Petersen et al. (2000) and Ugrinovskii and Petersen
(2001). The results of the paper are related to a number of earlier
papers in which the circle or Popov criteria have been used as tools
in nonlinear feedback design; e.g., see Arcak, Larsen, and Kokotovic
(2003) and the references therein. However in our case, we exploit
the full power of the minimax LQG methodologies in order to
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be able to handle the issues of control system performance and
measurement feedback in a systematic way.

The fundamental idea behind our approach is to modify the
standard IQC approach to robust control by including a copy of
the nonlinearity in the controller as shown in Fig. 1. This approach
is similar to that used in the Linear Parameter Varying approach
to controller design; e.g., see Packard (1994). Also, the idea of
using a copy of the nonlinearity in nonlinear observer design was
previously used in the paper (Arcak & Kokotovic, 2001). In our case,
we combine both nonlinearities into the plant and then use IQCs
and dynamic multipliers which exploit the repeated nonlinearity
(in order to reduce conservatism); see Fig. 2. Our approach enables
us to use minimax LQG control theory to construct the linear part
of the controller and then the nonlinear controller is constructed
by including a copy of the plant nonlinearity. The main result of
this paper extends the ideas of previous papers by the author in
this area (Petersen, 2008, 2009) to allow for dynamic multipliers
which exploit the repeated nonlinearities and to consider the case
of infinite horizon guaranteed cost controllers.

2. Problem statement

We consider a nonlinear stochastic uncertain system defined as
follows. Let (Ω,F , P) be a complete probability space such that
Ω = Rn

× Rl
× C([0,∞),Rf ), the probability measure P is de-

fined as the product of a given probability measure on Rn
× Rl and

the standard Wiener measure on C([0,∞),Rf ). Also, let W (·) be
a f -dimensional standard Wiener process, x0 : Ω → Rn be a
Gaussian random variable with mean x̌0 and non-singular co-
variance matrix Y0. Also, the random variable x0 and the Wiener
process W (·) are assumed to be stochastically independent on
(Ω,F , P). On this probability space, we consider the system
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Fig. 1. Nonlinear system with nonlinear controller.

Fig. 2. Nonlinear system and linear controller redrawnwith repeated nonlinearity.

drivenby thenoise inputW (·) and a control inputu(·), as described
by the stochastic differential equations:

dx(t) = Ax(t)dt +


g−

i=1

B1,iµi(t)+ B̌1ξ(t)


dt

+ B2u(t)dt + B1dW (t); x(0) = x0;

ζ (t) = Č1x(t)+ Ď12u(t);
νi(t) = C1,ix(t)+ D12,iu(t); i = 1, 2, . . . , g;

dy(t) = C2x(t)dt +


g−

i=1

D21,iµi(t)+ Ď21ξ(t)


dt

+D21dW (t); y(0) = 0 (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, ζ ∈ Rh is the
uncertainty output, ν1 ∈ R, . . . , νg ∈ R are the nonlinearity outputs,
ξ ∈ Rr is the uncertainty input, µ1 ∈ R, . . . , µg ∈ R are the
nonlinearity inputs, and y ∈ Rl is the measured output. Also, the
nonlinearity inputs are related to the nonlinearity outputs by the
following nonlinear relations:
µi(t) = ψi(νi(t)) ∀i = 1, 2, . . . , g (2)
which satisfy the following slope bound conditions:

αi <
ψi(ν1)− ψi(ν2)

ν1 − ν2
< βi (3)

for all ν1, ν2 with ν1 ≠ ν2 and for all i = 1, 2, . . . , g . Here the αi
and βi are given constants.

The uncertainty in the system is block structured H∞ norm
bounded linear time-invariant uncertainty relating the uncertainty
inputs and outputs as follows:

ξ(s) = ∆(s)ζ (s) (4)

where∆(s) = diag{∆1(s), . . . ,∆k(s)} and

‖∆i(s)‖∞ ≤ 1 ∀i ∈ {1, . . . , k}. (5)

2.1. Cost functional and controller

Associated with the system (1), consider a quadratic cost
functional of the form

J(u) = lim sup
T→∞

1
2T

E
∫ T

0
(x′Rx + u′Gu)dt. (6)

In (6), R ∈ Rn×n and G ∈ Rm×m are positive-definite symmetric
matrices. Also, the class of controllers considered are nonlinear
output feedback controllers:

dxc(t) =


Acxc(t)+

g−
i=1

G̃ciµ̃i(t)


dt + Bcdy(t);

xc(0) = xc0;

ν̃i(t) = K̃cixc(t); i = 1, 2, . . . , g;
u(t) = Ccxc(t) (7)

where

µ̃i(t) = ψi(ν̃i(t)) ∀i ∈ {1, 2, . . . , g}; (8)

i.e., we include copies of the nonlinearities (2) in the controller.
Hence, Eqs. (7), (8) define a nonlinear output feedback controller
with the property that the functional form of the nonlinearities
entering into the controller is the same as the functional form of
the nonlinearities entering into the plant. However, the inputs to
these controller nonlinearities are not the same as the inputs to
the plant nonlinearities. Then, we move the nonlinearities (8) into
the plant description and combine the inputs and outputs of the
system (7) as follows:

ỹ , [y′ µ̃′

1 . . . µ̃′

g ]
′
; ũ , [u′ ν̃ ′

1

... ν̃ ′

g
]
′
;

B̃c , [Bc G̃c1 . . . G̃cg ]; C̃c , [C ′

c K̃ ′

c1 . . . K̃ ′

cg ]
′. (9)

Using this notation, the controller (7) can be re-written

dxc(t) = Acxc(t)dt + B̃cdỹ(t); ũ(t) = C̃cxc(t) (10)

and the problem of controlling the nonlinear uncertain system (1),
(2), (4), (5) via the nonlinear controller (7), (8) is equivalent to the
problem of controlling the nonlinear uncertain system (1), (2), (4),
(5), (8), (with repeated nonlinearities) via the linear controller (10).

2.2. Integral quadratic constraints and dynamic multipliers

It is straightforward to verify that the uncertainties (4), (5)
satisfy the IQCs∫

∞

0
[ξ ′ ζ ′

]Mi

[
ξ
ζ

]
dt ≥ 0 ∀i = 1, . . . , k. (11)

Here, Mi = diag{0, . . . , 0,−I, 0, . . . , 0, I, 0, . . . , 0} where the
matrix −I is the ith block of Mi and the matrix I is the (k + i)th
block of Mi. Also ‖ · ‖ denotes the standard Euclidean norm.

To obtain IQCs and dynamic multipliers for the repeated
nonlinearities (2), (8), we use the results of D’Amato et al. (2001).
For any ψi(νi) satisfying condition (3), we construct a dynamic
multiplier defined by a 2 × 2 symmetric matrix Gi and an LTI
system with symmetric 2 × 2 transfer function matrix H i(s) and
whose impulse response matrix hi(·) has all of its entries in L1.
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