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a b s t r a c t

Multi-agent systems arise from diverse fields in natural and artificial systems, such as schooling of fish,
flocking of birds, coordination of autonomous agents. Inmulti-agent systems, a typical and basic situation
is the case where each agent has the tendency to behave as other agents do in its neighborhood. Through
computer simulations, Vicsek, Czirók, Ben-Jacob, Cohen, and Sochet (1995) showed that such a simple
local interaction rule can lead to a certain kind of cooperative phenomenon (synchronization) of the
overall system, if the initial states are randomly distributed and the size of the system population is large.
Since this model is of fundamental importance in understanding themulti-agent systems, it has attracted
much research attention in recent years. In this paper, we will present a comprehensive theoretical
analysis for this class of multi-agent systems under a random framework with large population, but
without imposing any connectivity assumptions as did in almost all of the previous investigations. To
be precise, we will show that for any given and fixed model parameters concerning with the interaction
radius r and the agents’ moving speed v, the overall systemwill synchronize as long as the population size
n is large enough. Furthermore, to keep the synchronization property as the population size n increases,
both r and v can actually be allowed to decrease according to certain scaling rates.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The collective behavior of multi-agent systems, such as swarm
intelligence, consensus, coordination, is a major focus of current
research on complex systems, and it has drawn much attention
from researchers in diverse fields, including biology (O’Brien, 1989;
Okubo, 1986; Parrish, Viscido, Grünbaum, 2002; Shaw, 1975),
physics (Vicsek et al., 1995), mathematics (Cucker & Smale, 2007),
computer science (Reynolds, 1987), and control theory (Jadbabaie,
Lin, &Morse, 2003;Moreau, 2005; Olfati-Saber, 2006; Ren & Beard,
2005; Savkin, 2004). Scientifically, how locally interacting agents
lead to collective behavior of the overall multi-agent systems is a
basic and challenging problem to be understood.
Of course, different local rules will give rise to different

collective behavior. In this paper, we will study the following
basic multi-agent systems: n autonomous agents moving in the
plane with the same constant speed and with the heading of each
agent updated according to the averaged direction of its neighbors.
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This model reflects a typical phenomenon in multi-agent systems:
each agent has the tendency to behave as other agents do in its
neighborhood (O’Brien, 1989; Vicsek et al., 1995). Vicsek et al.
(1995) used this model to investigate the gathering, transport and
phase transition in nonequilibrium systems, and they also pointed
out its potential applications in biological systems involving
clustering and migration. Through computer simulations, Vicsek
et al. showed that the above system will synchronize when the
population density is large and the noise is small. This model looks
simple, but the nonlinear relationship in the model makes the
theoretical analysis quite hard. In a well-known work, Jadbabaie
et al. (2003) initiated a theoretical study for the synchronization
of a related model, and inspired much subsequent theoretical
investigations on similar problems (see, Cucker and Smale (2007),
Liu and Guo (2008a), Moreau (2005), Ren and Beard (2005) and
Savkin (2004) among others). What Jadbabaie et al. (2003) showed
was that the system will synchronize if the associated dynamical
neighbor graphs are jointly connected within some contiguous
and bounded time intervals. It is worth mentioning that a similar
theoretical result was presented in an earlier paper by Tsitsiklis,
Bertsekas, and Athans (1986), but in a rather different context.
However, how to remove or verify the troublesome connectivity
condition imposed on the underlying dynamical systems turns out
to be a difficult and challenging issue in theory, due to the strongly
nonlinearly coupled dynamical equations describing the positions
and headings of all the agents.
A preliminary step towards the above issue has been made

by Liu and Guo (2008a), where a sufficient parameter condition
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is given for the connectivity and hence the synchronization of
the system in a deterministic framework with initial headings
lying in

(
−
π
2 ,

π
2

)
. Some counterexamples are also given by Han,

Li, and Guo (2006) and Liu and Guo (2008a) to show that the
connectivity of the associated neighbor graphs is not sufficient for
synchronization if the initial headings are allowed to be in [0, 2π).
The main problem with Liu and Guo (2008a) is that the condition
on the model parameters used there is rather restrictive. There are
also a few other papers which establish synchronization without
resorting to a priori connectivity conditions, by using additional
information and/or constrains, for example, Cucker and Smale
(2007) studied the model where each agent can interact globally,
and Tahbaz-Salehi and Jadbabaie (2007) introduced a periodic
boundary condition in the model.
Recently, a major advance towards the complete synchroniza-

tion analysis is made by Tang and Guo (2007), where a random
framework as originally considered byVicsek et al. (1995) is used in
the analysis of the linearized heading equations. They proved that
the overall multi-agent system will synchronize with large proba-
bility as long as the size of the population is large enough. However,
as mentioned by Jadbabaie et al. (2003) and Han et al. (2006), the
linearized heading equation may give rise to some unreasonable
phenomenon. It is worth pointing out that the random framework
considered by Tang and Guo (2007) is just an assumption on the
initial distribution of all the agents, the subsequent states together
with the associated neighbor graphs, however, may well change
from time to time according to the nonlinear dynamical models
under consideration. This random framework is obviously different
from those studied by Frasca, Carli, Fagnani and Zampieri (2009),
Tahbaz-Salehi and Jadbabaie (2008) and Wu (2006), in either the
problem formulations or the required assumptions, where certain
connectivity conditions are essentially assumed in these papers.
However, removing or verifying the troublesome connectivity con-
dition of locally interacting nonlinearmulti-agent systems appears
to be a ‘‘bottleneck’’ problem in general.
In this paper, we will establish two synchronization theorems

for the basic nonlinear model of Vicsek et al. (1995) in the
random framework, without changing the locally interacting laws
and without imposing any connectivity conditions. In comparison
with the linearized heading equations studied by Tang and Guo
(2007), a key issue now is how to deal with the difficulties
arising from the nonlinear heading equations. We will give a
comprehensive theoretical analysiswith large population, by using
some basic facts of Tang and Guo (2007), together with some
estimation formulti-arraymartingales andwith a detailed analysis
for the nonlinear equations. Intuitively speaking, large population
is beneficial to the connectivity in general, which in conjunction
with the averaging mechanism to be given in Eq. (3) will ensure
the topology of the dynamical network does not change too much,
and hence ensure the synchronization of the system. We will give
a rigorous proof for this intuition, and the main results to be
established are the following:
(i) For any given and fixed model parameters, i.e., the interaction
radius r and the agents’ moving velocity v, the overall system
will synchronize as long as the population size n is large
enough;

(ii) To keep the synchronization property as the population size
n increases, both r and v can actually be allowed to decrease
according to certain scaling rates to be given in the paper.

Part of the results in this paper was presented in Liu and Guo
(2008b) without proof details. The rest of this paper is organized
as follows: In Section 2, we will present our main results; Some
notations and preliminary lemmas will be given in Section 3;
The proofs of the main theorems will be given in Sections 4
and 5 respectively, and some simulation results will be given
in Section 6; Finally, some concluding remarks will be made in
Section 7.

2. Main results

Themulti-agent system to be studied in this paper is composed
of n autonomous agents (or subsystems or particles), labeled by
1, 2, . . . , n, moving in the plane with the same absolute velocity,
and with each agent’s heading updated according to the average of
the directions of its neighbors (Vicsek et al., 1995). The neighbors
of an agent i (1 ≤ i ≤ n) at any discrete-time t = 0, 1, 2, . . . are
those which lie within a circle of radius r (r > 0) centered at the
agent i’s current position. Denote the neighbors of the agent i at
time t asNi(t), i.e.

Ni(t) = {j|dij(t) < r}, (1)

where dij(t) =
√
(xi(t)− xj(t))2 + (yi(t)− yj(t))2, and (xi(t), yi

(t)) is the position of the agent i at time t . It is easy to see that each
agent is a neighbor of itself. Each agent moves in the plane with
the same constant absolute velocity v (v > 0), so its position is
updated according to the following equation:{
xi(t + 1) = xi(t)+ v cos θi(t + 1)
yi(t + 1) = yi(t)+ v sin θi(t + 1)

∀i : 1 ≤ i ≤ n, (2)

where θi(t) is the heading of the agent i at time t , which is updated
according to the following average direction of the neighbors’
velocity:

θi(t + 1) = arctan

∑
j∈Ni(t)

sin θj(t)∑
j∈Ni(t)

cos θj(t)
, ∀i : 1 ≤ i ≤ n. (3)

Through computer simulations, Vicsek et al. (1995) showed
that the above Eqs. (1)–(3) can make all agents move in the same
direction eventually, when the population size n is large enough.
Throughout the paper, synchronization means that there exists a
constant heading θ , such that

lim
t→∞

θi(t) = θ, ∀i.

From the description of the above mathematical model, we can
see that the dynamical behavior of the overall system is deter-
mined completely by the moving velocity v, the neighborhood ra-
dius r and the initial states. Furthermore, one can observe that the
neighbors of each agent are determined by the positions of other
agents via (1), whereas the positions of agents are determined by
the headings via (2), andmoreover, the headings are influenced by
the neighbors via (3) in return. So, there is a complicated nonlinear
relationship between positions and headings of all agents, which
makes a rigorous theoretical analysis quite involved.
The main purpose of this paper is to study the synchronization

property of the multi-agent systems (1)–(3) with large population.
We will conduct our analysis under the following simple and
natural assumptions on the initial states of the system, which are
similar to those used in the simulation study of Vicsek et al. (1995).

Assumption 1. The initial positions and headings of all agents
are mutually independent, with positions uniformly and indepen-
dently distributed in the unit square S, and headings uniformly
and independently distributed in [−π + ε0, π − ε0]with arbitrary
ε0 ∈ (0, π).

Under Assumption 1, the initial random geometric graph G0
associatedwith the initial positionswill have some nice properties,
one of which is the connectivity studied in the celebrated paper of
Gupta and Kumar (1998). Other related nice results may be found
in thework of Penrose (2003) andXue andKumar (2004). However,
in our paper, we need a deeper understanding of both the initial
graph and the subsequent dynamic graphs in Sections 3 and 4,
which will enable us to establish the following theorem whose
proof is given in Section 4.
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