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ARTICLE INFO ABSTRACT

Available online xxxx More than one century ago, Lippmann found that capillary forces can be effectively controlled by external
electrostatic forces. As a simple example, by applying a voltage between a conducting liquid droplet and the

l<eyv\{0rd51 surface it is sitting on we are able to adjust the wetting angle of the drop. Since Lippmann's findings,

Wetting electrocapillary phenomena - or electrowetting - have developed into a series of tools for manipulating

Electrowetting

; . . microdroplets on solid surfaces, or small amounts of liquids in capillaries for microfluidic applications. In this
Static & dynamic capillary phenomena

article, we briefly review some recent progress of fundamental understanding of electrowetting and address

Electrocapillarity some still unsolved issues. Specifically, we focus on static and dynamic electrowetting. In static electrowetting,
we discuss some basic phenomena found in DC and AC electrowetting, and some theories about the origin of
contact angle saturation. In dynamic electrowetting, we introduce some studies about this rather recent area.
At last, we address some other capillary phenomena governed by electrostatics and we give an outlook that
might stimulate further investigations on electrowetting.
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1. Introduction

Wettability is a key parameter to describe the chemical-physical
properties of a surface and is usually characterized by a very simple
method: measuring the angle of contact - or wetting angle - of a
droplet of a test liquid with the surface. Triggered by many industrial
applications, such as coating, printing, cleaning, or friction and wear
control, many chemical or physical methods have been developed to
control the wettability of surfaces [1-3]. Eventually, lyophilic,
superlyophilic, lyophobic and superlyophobic surfaces can be
fabricated in laboratory by modifying the surface chemistry and
introducing multiscale physical roughness [1-3]. Such surfaces
maintain their wetting properties over some time, but do not allow
for an active control of their wettability after being manufactured.
In practical applications, however, active control of the wettability
is more attractive. Indeed, smart approaches such as thermal tuning
[4,5], optical switching [6], as well as electrostatic controlling of
contact angles [7,8] have been developed. Among them, the
electrostatic method is the most popular one due to its real-time
actuation, fast response, long term reliability, and good stability of
the actuation.

During his works, Lippmann found that applying a voltage
between mercury and aqueous electrolytes allowed for controlling
the position of the mercury meniscus in a capillary. In 1875, he was
probably the first to report this electrocapillary phenomenon, which
is at the foundations of electrowetting [9]. He further proposed a
physical model and developed a number of applications. Later,
Moller [10], Frumkin et al. [11], Gorodetskaya and Kabanov [12],
Smolders [13], and Nakamura et al. [14] conducted contact angle
measurements at the mercury/metal-electrolyte interfaces. They
found that the contact angle decreased with applied potential, and
argued that the decrease of contact angle was due to the change of
interfacial energy [10-15]. However, Lippmann's discovery and the
other works did not attract much attention until the 1980s, when
the term electrowetting was coined and proposed for designing
display devices [16,17]. Since then, electrowetting started to develop
rapidly and nowadays it has been successfully applied in areas like
lab-on-chip systems [18-20], adaptive optical lenses [21], electronic
display technology [17,22], or mixing in microfluidic channels
[23,24]. In principle, electrowetting can be applied to drops sitting
on a bare electrode, or on thin dielectric layer on top of an electrode.
However, most of the recent electrowetting studies and applications
are carried out on dielectric, giving rise to the definition of
electrowetting-on-dielectric (EWOD).

In this review, we focus on the latest progress on some
fundamental aspects of electrowetting. In Section 2, we give a short
description of the basics of static and dynamic wetting. Section 3 is
devoted to static electrowetting. We will discuss the basic
phenomena in DC and AC electrowetting, as well as the contact
angle saturation (CAS) phenomenon. In Section 4, recent results
about fast and low speed electrowetting will be presented. Finally,
we briefly address some other interesting capillary phenomena
governed by electrostatics.

2. Wetting fundamentals
2.1. Contact angle and contact angle hysteresis

2.1.1. Contact angle

When a liquid drop is brought into contact with a solid surface, the
drop spreads on the surface to minimize the free energy of the system.
Eventually, the drop comes to rest on the surface in a minimum energy
state. If the drop size, Ry, is smaller than the capillary length, L, e.g. Ry <<
Lc = plg, with y and p respectively the surface tension and the density
of the liquid and g the acceleration due to gravity, the gravity does not
distort the spherical drop shape and can thus be neglected [25]. This
condition is usually satisfied in all published electrowetting studies.
For chemically and physically homogenous surfaces, the drop in
equilibrium adopts a spherical cap shape, as shown in Fig. 1. The
equilibrium contact angle, 0,4, near the contact line is determined by
the interfacial tensions, vy, Yis, and <ysy at the liquid-solid—vapor
interfaces.

€SO, = Ysv —Vis (1)
Y

Usually, v,y is denoted as y for brevity. The above equation is
called Young's equation, in honor of Thomas Young who expressed
it with words in his work published in 1805 [26]. Young's equation
can be derived either from a mechanical perspective [1,3] or from
a thermodynamic perspective [27]. 6.4 is a useful parameter to
characterize the wettability of surfaces, as one can easily relate the
contact radius R to 6.4 with

1/3
4
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R = Ry Sinfy, )

Taking the limit as 6,4 — 0°, we find R — « which means the liquid
tends to wet the surface completely. While if 6., — 180°, we obtain
R — 0, which reflects that the surface repels the liquid extremely.

2.1.2. Contact angle hysteresis

Natural surfaces are decorated with physical roughness or chemical
moieties. The physical or chemical heterogeneity of surfaces leads to
deviations of the contact angle from the one predicted by Young's
equation. Pinning of the contact line of a wetting/dewetting drop due
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Fig. 1. Sketch of a drop sitting on a solid substrate in equilibrium.
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