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Fluid lipid membranes can mediate forces between particles bound to them: A local deformation of the surface
geometry created by some object spreads to distant regions, where other objects can respond to it. The physical
characteristics of these geometric interactions, and how they are affected by thermal fluctuations, are well de-
scribed by the simple continuum curvature-elastic Hamiltonian proposed 40 years ago byWolfgangHelfrich. Un-
fortunately, while the underlying principles are conceptually straightforward, the corresponding calculations are
not—largely because one must enforce boundary conditions for finite-sized objects. This challenge has inspired
several heuristic approaches for expressing the problem in a point particle language. While streamlining the cal-
culations of leading order results and enabling predictions for higher order corrections, the ad hoc nature of the
reformulation leaves its domain of validity unclear. In contrast, the framework of Effective Field Theory (EFT) pro-
vides a systematicway to construct a completely equivalent point particle description. In this reviewwepresent a
detailed account for how this is accomplished. In particular, we use a familiar example from electrostatics as an
analogy to motivate the key steps needed to construct an EFT, most notably capturing finite size information in
point-like “polarizabilities,” and determining their value through a suitable “matching procedure.” The interac-
tion (free) energy then emerges as a systematic cumulant expansion, for which powerful diagrammatic tech-
niques exist, which we also briefly revisit. We then apply this formalism to derive series expansions for
interactions between flat and curved particle pairs, multibody interactions, as well as corrections to all these in-
teractions due to thermal fluctuations.
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1. Introduction

In 1973WolfgangHelfrich proposed a continuum-elastic Hamiltoni-
an that describes fluid lipid membranes as curvature-elastic surfaces
[1]. This seminal work, and Helfrich's many subsequent ingenious con-
tributions, opened up an incredibly fruitful field of research for many
scientists, and it has been instrumental in disciplines ranging from
soft matter physics over chemical engineering and materials science
to biophysics and cell biology. In this review we will deal with one par-
ticular consequence of this Hamiltonian, namely the fact that surface-
associated objects will generally experience interactions mediated by
the membrane's curvature-elastic deformations and fluctuations there-
of.While this phenomenon has been subject of numerous studies in the
past, the aimof the present review is to illustrate how those interactions
can be described systematically and at arbitrary accuracy within the
physically intuitive framework of Effective Field Theory (EFT).

1.1. The Helfrich Hamiltonian

At its heart, the Helfrich Hamiltonian is a functional that assigns an
energy to a two-dimensional surface embedded in three-dimensional
space:

H S½ � ¼
Z
S
dA

1
2
κ K−K0ð Þ2 þ κKG

� �
: ð1Þ

Here, K = c1 + c1 is the total curvature and KG = c1c2 is the Gaussian
curvature of a given point on the surface, at which c1 and c2 are the
local principal curvatures. The inverse length K0 is the bilayer's sponta-
neous curvature (which often vanishes due to up–down symmetry) and
the two characteristic energies κ and κ are the mean and Gaussian cur-
vature moduli, respectively. The simplicity of this functional reflects
several properties of fluid membranes: They are close to inextensible
while fairly easy to bend, so curvature deformations are the soft
modes which an elastic description should capture. And due to fluidity
shear stresses must vanish, requiring a functional that is insensitive to
purely tangential deformations.

A functional variation of Eq. (1) leads to the associated Euler–
Lagrange equation, whose solutions describe equilibrium (or “ground
state”) shapes of fluid membranes, subject perhaps to extra constraints
[2]:

κ −ΔK þ 1
2
K ′ K ′K−2 K2−KG

� �h i� �
þ σK ¼ P ; ð2Þ

where K′= K− K0, the tension σ and the pressure P are Lagrange mul-
tipliers fixing area and volume constraints, respectively, andΔ is the co-
variant Laplacian on the surface. Uncovering the subtle physics hidden
in this fourth order partial nonlinear differential equation has been a
major research thrust for many years [3,4].

1.2. Geometric field theory

The Helfrich Hamiltonian (1) is a continuum-elastic energy func-
tional. However, one can also interpret it as the action of a field theory,
for which the geometry of themembrane is the field—much in the same
sense in which general relativity is a field theory built on the geometry
of space-time.With this viewpoint, Eq. (2) is the free field equation, and
just like its general relativity counterpart (and for the same reason) it is
highly nonlinear and very difficult to deal with. But general relativity
has aweak field limit, Newtonian gravity, and the equivalent simplifica-
tion formembranes occurs in the limit of weakly deformed surfaces. For
instance, if a membrane does not deviate much from a flat plane, the
Hamiltonian (1) strongly simplifies to

H S½ � ¼
Z
Sp

d2x
1
2
κ Trhð Þ2 þ κ deth

� �
; ð3Þ

where (h)ij= ∂2h/∂xi∂xj is the Hessian of the height function h(x,y), and
the integral now extends over the projectionSp of the surfaceS onto the
base plane. The parameterization via h(x,y) is called Monge gauge [5],
and Eq. (3) is then referred to as the Helfrich Hamiltonian in linearized
Monge gauge. Linearized, because all terms in this gauge that would
go beyond quadratic order have been neglected, such that the field
equations are now linear:

−κ∇2∇2hþ σ∇2h ¼ 0 ; ð4Þ

where ∇2 is now the ordinary Laplacian on the flat base plane and we
assumed no pressure difference between the two sides of the mem-
brane (in accordance with the condition of approximate flatness).1

While the “true” field theory is the nonlinear version resting on Eqs.
(1) and (2), the linearized version is often a good approximation. What
might at first sound surprising, though, is that even the linear theory can
be difficult to deal with. The problem of membrane mediated interac-
tions is a prime example where this happens, and we thereby home in
on the central topic of our review.

1.3. Curvature charges and their interactions

Field theories become more interesting once there are charges to
which the field can couple. Since charges source fields, and fields in
turn exert forces on charges, this coupling induces interactions between
the charges, mediated by the field. For instance, electric charges interact

1 If in this parameterization one includes the spontaneous curvature via1
2 κ ∇2h−K0

� �2
,

it will only give rise to a constant 1
2 κK

2
0 and the term κK0∇2h, which can be integrated to

the boundary; for the most common boundary conditions K0 hence becomes irrelevant,
even if the nonlinear theory has a non-vanishing K0. However, a systematic expansion of
Eq. (1) up to quadratic order in h shows that 1

2 κK
2
0 in fact gets multiplied by 1þ 1

2 ∇hð Þ2
(from the area element), resulting in the additional term 1

4 κK
2
0 ∇hð Þ2, which rescales the

surface tension. The connection between spontaneous curvature and tension (also beyond
Monge gauge) is further discussed in Ref. [6].
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