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We review the dynamical behavior of giant fluid vesicles in various types of external hydrodynamic flow. The in-
terplay between stresses arising from membrane elasticity, hydrodynamic flows, and the ever present thermal
fluctuations leads to a rich phenomenology. In linear flows with both rotational and elongational components,
the properties of the tank-treading and tumbling motions are now well described by theoretical and numerical
models. At the transition between these two regimes, strong shape deformations and amplification of thermal
fluctuations generate a new regime called trembling. In this regime, the vesicle orientation oscillates quasi-
periodically around the flow direction while asymmetric deformations occur. For strong enough flows, small-
wavelength deformations like wrinkles are observed, similar to what happens in a suddenly reversed
elongational flow. In steady elongational flow, vesicles with large excess areas deform into dumbbells at large
flow rates and pearling occurs for even stronger flows. In capillary flows with parabolic flow profile, single
vesicles migrate towards the center of the channel, where they adopt symmetric shapes, for two reasons. First,
walls exert a hydrodynamic lift force which pushes them away. Second, shear stresses are minimal at the tip of
the flow. However, symmetry is broken for vesicles with large excess areas, which flow off-center and deform
asymmetrically. In suspensions, hydrodynamic interactions between vesicles add up to these two effects,making
it challenging to deduce rheological properties from the dynamics of individual vesicles. Further investigations
of vesicles and similar objects and their suspensions in steady or time-dependent flow will shed light on
phenomena such as blood flow.
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1. Introduction

Giant unilamellar vesicles (GUVs) have become a paradigmatic soft
matter system for many reasons. First, even in equilibrium they exhibit
an amazing variety of shapes. At fixed area and enclosed volume, these
shapes result from the minimization of the bending, or “curvature”,
energy

ℋ ¼ ∫dA κ
2

2H−C0ð Þ2 þ κGK
h i

ð1Þ

written here in the form introduced by Helfrich forty years ago [1,2]. H
and K are the mean and Gaussian curvatures, respectively, κ and κG the
corresponding bending energies, and C0 a spontaneous curvature
reflecting bilayer asymmetry. Systematic theoretical work in the nineties
in combination with experiments using video microscopy has led to a
quantitative understanding of how the subtle aspects of bilayer elasticity
[3–5] determine the shape diagram, as comprehensively reviewed in [6].
Second, even though biological cells have a more complex architecture,
vesicles have often served as a model system for anucleate cells such as
red blood cells (RBCs), whose equilibrium shapes can be predicted
[7,8] by minimizing a generalized version of the energy (1). Third, and
coming to the topic of this review, the behavior of vesicles in external
flow field is determined by a complex interplay between membrane
elasticity, hydrodynamic forces, and thermal fluctuations acting at mi-
croscopic length scales. Studying the resulting rich phenomenology is
fundamental for understanding the flow dynamics of these soft objects.

The physical properties of the membrane play a key role in this
dynamics. The lipid bilayer with a thickness of approximately 5 nm is
very small compared to the GUV radius (~10 μm). This bilayer is often
in a liquid phase at room temperature [9] making the vesicle very de-
formable. Bending deformations involve much lower energies than
stretching and shearing ones which can be neglected [6]. The bending
rigidity κ is typically between 10−20 and 2 × 10−19 J (approximately
2–50kBT at room temperature, although lipidswidely used in dynamical
experiments have a much narrower range of 25–50kBT) [6,9–11]. The
membrane viscosity is about 10−8 to 10−9 Pa sm [9,10,12–15]. Typical-
ly, the membrane can be considered incompressible since the number
of lipids in it is constant and the stretching energy is very large [16].
Therefore, the total membrane area is constant. Moreover, the mem-
brane is permeable towater but impermeable tomany othermolecules.
For a vesicle in equilibrium, any influx of water creates an osmotic pres-
surewhich is relaxed by an outflux of the samemagnitude [1]. In exper-
iment, one tries to keep a zero net osmotic pressure. Even if a small net
flow still exists, volume changes occur on a time-scale of several hours,
which is much longer than the typical experimental time-scale of about
10 to 15 minutes. We can thus consider the vesicle volume to be con-
stant as well. These few properties are sufficient to characterize the
forces that will counteract the external forcing.

We first review the general theoretical, numerical, and experimental
methods used to address this problem. Then, we consider the case of
planar linear flow, for which vesicle dynamics has been thoroughly
studied in recent years. Afterwards, we describe the effect of walls and
capillary flows on single vesicles. Moving further up the scale from
micro tomacro,we discuss hydrodynamic interactions and the rheology
of vesicle suspensions. Finally, we present related questions on the non-
equilibrium dynamics of vesicles and similar objects.

2. Methods

We present the theoretical tools for describing the dynamics of
vesicles under hydrodynamic flows, then the techniques used in direct
numerical simulations, and finally the experimental setups.

2.1. Theoretical modeling

The membrane is modeled as a two-dimensional sheet of incom-
pressible fluid [17]. It encloses an internal liquid of viscosity ηi and is
suspended in an outer liquid of viscosity ηo, defining the viscosity
contrast λ ≡ ηi/ηo. The volume V and the surface area A are constant
but the vesicle is not necessarily spherical. We thus define the effec-
tive radius R0 ≡ (3V / 4π)1/3, which is the radius of a sphere of the
same volume. Relatively to this sphere, the vesicle has an excess
area Δ ≡ A/R0

2 − 4π ≥ 0.1 Ignoring for simplicity the energy due to
Gaussian curvature (constant for spherical geometry) and spontaneous
curvature, the bending energy of the membrane is given by [1,18]

ℋκ ¼ ∫dA κ
2

2Hð Þ2 þ σ
h i

; ð2Þ

where σ is the surface tension, a Lagrange multiplier that ensures
local and global area conservation. Unlike for droplets, σ is here a dynam-
ical variable, analogous to pressure for three-dimensional fluids, which
adjusts itself to compensate the external stresses. It can therefore take
negative values as explained further below. This vesicle is subject to an
external flow. Due to the vesicle dimensions, the Reynolds number
Re is small – for a vesicle of radius 10 μm suspended in water (viscosity
of 10−3 Pa s) and subject to a shear flow with rate 1 s−1, Re ~10−4

– and the flow is described by the Stokes equations

∇v ¼ 0 ∇p ¼ η∇2v; ð3Þ

where v is the flow velocity, p the pressure, and η the viscosity.
These equations have to be solved for the inner and outer fluids.
The velocities and stresses are then matched at the membrane with
no-slip boundary conditions and under the constraints of membrane
incompressibility and impermeability.

Analytical models need further assumptions to derive equations
ofmotion for the vesicle. One strategy consists in describing the dynam-
ics effectively with only a few degrees of freedom [19–25]. These
models are based on the Keller–Skalak (KS) model [19], which assumes
vesicles of fixed ellipsoidal shape with fluid membrane. Their dynamics
in shear flow is then described by only two variables: the inclination
angle θ of the long axis of the vesicle relative to the flow direction,
and the angle ϕ describing the displacement of a membrane element,
see Fig. 3. Another strategy relies on looking at quasi-spherical vesicles,
i.e., vesicleswith small excess areaΔ≪ 1 [16,26–32]. The radius of such
vesicles

r θ;ϕð Þ≡ R0 1þ
X
l;m

ulmYlm

0
@

1
A ð4Þ

1 Some authors define an effective radius over the area as R′
0 ≡

ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
and a reduced

volume τ ≡ V/(4πR0′3/3) ≤ 1. The excess area is then given by Δ = 4π(τ−2/3 − 1).
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