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About forty years ago it was realized that phospholipid membranes, because they are composed of two layers,
exhibit particular, and specific mechanical properties [1–3]. This led to the concept of nonlocal membrane bend-
ing, often called area difference elasticity.We present a short history of the development of the concept, followed
by arguments for a proper definition of the corresponding elastic constant. The effects of the nonlocal bending
energy on vesicle shape are explained. It is demonstrated that lipid vesicles, cells and cellular aggregates exhibit
phenomena that can only be described in a complete manner by considering nonlocal bending.
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1. Introduction

Envelopes of phospholipid vesicles, cellular organelles, cells and cer-
tain more complex biological entities with a closed surface are in

general lamellar membranes or their analogous layered structures. In
many cases the distances between the individual layers of these struc-
tures are fixed. For example, the hydrophobic interaction between the
two layers of a phospholipid membrane dictates that they are in close
contact. A salient feature of this bilayer is, however, that these two
layers are unconnected, meaning that they can, if forced to, slide one
over the other. Consequently, lateral stresses on them are relaxed inde-
pendently. Such a response is essentially nonlocal because the

Advances in Colloid and Interface Science 208 (2014) 189–196

⁎ Corresponding author at: Institute of Biophysics, Faculty of Medicine, University of
Ljubljana, Ljubljana, Slovenia. Tel.: +386 1 5437602; fax: +386 1 5437601.

E-mail address: sasa.svetina@mf.uni-lj.si (S. Svetina).

0001-8686/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cis.2014.01.010

Contents lists available at ScienceDirect

Advances in Colloid and Interface Science

j ourna l homepage: www.e lsev ie r .com/ locate /c i s

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cis.2014.01.010&domain=pdf
http://dx.doi.org/10.1016/j.cis.2014.01.010
mailto:sasa.svetina@mf.uni-lj.si
http://dx.doi.org/10.1016/j.cis.2014.01.010
http://www.sciencedirect.com/science/journal/00018686


relaxation is spread over the whole closed surface. It has to be noted
that, while the stretching deformation of a single-layered membrane
in its liquid state is described by a single deformational mode, that of a
membrane bilayer involves two independent deformational modes,
one pertaining to the area expansivity and the other to the relative
stretching of the two layers, which can be also viewed as nonlocal bend-
ing. Envelopes of cells can have, in addition to their phospholipid bilayer
other accompanying layers, which implies their more complex behav-
ior. However, if an additional layer is at a fixed distance from the already
existing layers, its area is determined by their areas and it does not con-
stitute a newdegree of freedom. A single nonlocal bending energy term,
of the same type as that derived for the bilayer, is thus applicable also to
membranes with a number of layers larger than two.

Nonlocal bending energy has been comprehensively discussed in
several reviews [4–8]. However, there remain somemotives for further
discussion. One is to provide a more focused discussion, since none of
those reviewswere devoted solely to the nonlocal bending aspects. Fur-
ther, there are some technical issues which still need to be settled: the
energy term is known under different names (relative stretching, non-
local bending, area difference elasticity), and there are different defini-
tions for the corresponding material constant. Use of the concept may
behampered by the absence ofwell established, unified views. The non-
local aspect of bending energy is also often left in the shade. For exam-
ple, in an influential review on biological applications of membrane
bending, the nonlocal bending contribution is scarcely mentioned [9].
An even stronger reason for a critical review is that, despite the compre-
hensivework ofMiao et al. [10], it is still possible to find in the literature
some disparate views about the effect of nonlocal bending energy on
vesicle shape. A possible reason for some ambiguities in the use of this
energy term and its neglect could be that some earlier developments
of the related concepts are in widely scattered and not so readily acces-
sible literature. It thus seems appropriate to round up the subject by
collecting all the essential concepts together. The particular reason for
this review to be part of this volume is the pioneering contribution of
Wolfgang Helfrich [1] in identifying the problems of the mechanics of
bilayer membranes.

The review is divided into sections on the mathematical formula-
tions of membrane nonlocal and local bending energies, on the history
of thedevelopment of the concept of nonlocal bending, on the definition
and measurement of the corresponding membrane material constant,
and on the effects of the nonlocal bending energy on vesicle shape.
We conclude with a selection of examples aimed at illustrating the
role of nonlocal bending energy in vesicle and cell phenomena.

2.Mathematical formulation of nonlocal and local bending energies

The nonlocal bending energy (Wr) is introduced by showing how
the material parameters involved depend on those of the constituent
layers. For a thin, closed membrane composed of any number of layers,
it can be expressed as

Wr ¼
1
2

kr
A0

C−C0

� �2 ð1Þ

where kr is the nonlocal bending constant, A0 is themembrane area,C is
the integral of the sum of the principal membrane curvatures C1 and C2
over the membrane area (which, from here on, we call the integrated
curvature)

C ¼
Z

C1 þ C2ð ÞdA0; ð2Þ

and C0 the preferred (equilibrium) value of this integral (the preferred
integrated curvature).

Phospholipid membranes in their liquid state at curvatures smaller
than the reciprocal of few membrane thicknesses exhibit no shear.

The material properties that appear in Eq. (1) can be for such mem-
branes expressed [11] in terms of the preferred areas (A0,i) and the
area expansivity moduli (Ki) of the constituent n layers (i = 1,2,…n)
and the distances between their neutral surfaces and the membrane
neutral surface (hi) as

A0 ¼

Xn
i¼1

K i

Xn
i¼1

K i

A0;i

; ð3Þ

kr ¼ A0

Xn
i¼1

K ih
2
i

A0;i
; ð4Þ

and

C0 ¼ A0

kr

Xn
i¼1

K ihi: ð5Þ

The membrane neutral surface is defined as the surface that deter-
mines the extension of the whole membrane relative to its preferred
area A0. Its distance from a chosen layer is defined by the condition

Xn
i¼1

K ihi
A0;i

¼ 0 ð6Þ

from which its position can be obtained from the n − 1 distances be-
tween neighboring layers. In general, Eq. (1) is not limited to the de-
scription of closed surfaces; it also contributes to the mechanical
behavior of any membrane whose layers are all laterally constrained
at the membrane border. Why Eq. (1) is a convenient definition of the
nonlocal bending energy term will be discussed in Section 4.

The nonlocal bending energy is distinct from the ordinary mem-
brane bending energy that represents local membrane properties and
is given by the integral over the area densities of the local (Wb) and
Gaussian (WG) bending energies

Wb þWG ¼ 1
2
kc

Z
C1 þ C2−C0ð Þ2dA0 þ kG

Z
C1C2dA0; ð7Þ

where kc is the local bending constant, kG is the Gaussian bending con-
stant, and C0 is the spontaneous curvature [12]. The nonzero spontane-
ous curvature C0 reflects transmembrane asymmetry— an unsupported
piece of an asymmetrical membranewould assumemechanical equilib-
rium in a curved conformation with radius 2/C0. The local and Gaussian
bending constants are sums over the corresponding constants of the
constituent layers, whereas the spontaneous curvature is given in
terms of these constants as

C0 ¼

Xn
i¼1

kc;iC0;i

kc
; ð8Þ

where kc,i is the bending constant and C0,i is the spontaneous curvature
of the i-th layer [11].

3. History of the nonlocal bending concept

The nonlocal bending concept was established in three independent
works published in 1974 to describe the elastic behavior of lipid bilay-
ers. Helfrich [1] considered blocked lipid exchange between the mono-
layers of the bilayer and concluded that the effect of the consequent
non-equilibrium lipid distribution goes hand in hand with membrane
spontaneous curvature. Sheetz and Singer [2], by analogous reasoning,
explained the shape transformations of a red blood cell arising from
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