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ARTICLE INFO ABSTRACT

Keywords: The internal phase separation technique is a versatile method for liquid core-polymer shell formation, yet limited
Microcapsule to very hydrophobic core materials and actives. The use of polymeric cores instead circumvents this restriction
Solvent evaporation due to the absent mixing entropy for binary polymer mixtures which allows the polymeric core (and the active)
Core-shell to approach the polarity of the shell. Polystyrene core-shell and janus particles were formulated using poly-
JR:EE :erry methylmethacrylate, poly(lactic acid), poly(lactic acid-co-glycolic acid), poly(e-caprolactone) or cellulose tria-
Spreading cetate as shell-forming polymers. The morphology and the partitioning was experimentally determined by se-

lectively staining the core and the shell with B-carotene and methylene blue respectively. In addition, the van
Oss formalism was introduced to theoretically predict the thermodynamic equilibrium morphology. As eluci-
dated using the theoretical predictions as well as experimental optical tensiometry, it was found that the driving
force for core-shell morphology is, in contrast to liquid core-polymer shell particles, a low core-shell interfacial

tension.

Microencapsulation is an important technology for the protection
and/or controlled release of active substances [1-4]. Among the
available encapsulation methods, the internal phase separation route
[5] has increased in popularity during the last decade [1]. This popu-
larity can be ascribed to its versatility in terms of possible shell (usually
polymeric) and core material (usually a liquid), encapsulation effi-
ciencies often approaching 100%, absence of residual reactive species
(e.g. monomers or initiators used for interfacial polymerization en-
capsulation), good control over core and shell dimensions and to its
feasibility for industrial scale-up [1]. The theoretical basis and experi-
mental details of the method are discussed on the next page. Most often,
the microcapsules comprise liquid cores which may give a faster release
than intended due to the high diffusivity of the actives in liquids. This
can be circumvented by using alkanes which are solid at room tem-
peratures and by performing the encapsulation at slightly elevated
temperatures above their melting temperatures [6]. Another issue with
liquid cores is the restriction in terms of their polarity imposed by the
spreading requirements of the internal phase separation method [1,5].
This restriction is discussed in detail below. In short, for encapsulation

in aqueous media, the core engulfment by the polymeric shell ne-
cessitates that the core liquid is sufficiently hydrophobic (e.g. alkanes)
[5,7]. This has consequences for moderately hydrophobic actives
which, more than occasionally, prefer the shell rather than the core [8].

The use of polymeric cores instead of liquid ones will obviously
influence the release rate since the diffusion coefficient of actives in the
core will be reduced by orders of magnitude [1]. Yet, more importantly,
polymeric cores are allowed to be much more polar than their liquid
counterparts, approaching the polarity of the polymeric shell. This is a
consequence of the absent mixing entropy for binary polymer mixtures
which enables polymers of similar polarity to remain immiscible.
Subsequently, a wider range of more polar actives may be encapsulated
by using polymeric cores.

In this report, formation of core-shell particles comprising a poly-
styrene core and various polymeric shells is presented. Dyes of different
polarities have been used to selectively envisage the core and shell
respectively. In addition, the van Oss formalism is presented as a tool to
predict the microcapsule morphology and to determine whether en-
capsulation is theoretically conceivable or not for a given core-shell
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Scheme 1. a) Encapsulation process via the internal phase separation route. b) Possible morphologies and outcomes of the microencapsulation: bl) core-shell, b2)
acorn-shaped morphology, and b3) droplet separation. The most common system, used for encapsulation of hydrophobic dyes, is an O/W emulsion. The aqueous
phase contains a dispersant (typically a water-soluble polymer such as PVA) and the oil phase contains a volatile solvent (v.s), the shell-forming polymer, the core
material (usually an oil which is a non-solvent for the polymer, n.v.n.s) [1,6] (see Chart 1).

pair.

Encapsulation based on internal phase separation relies on the in-
ternal segregation and subsequent spreading of coacervate phases in-
side an emulsion droplet (see Scheme 1a). The means for phase se-
paration is the continuous evaporation of the v.s. which subsequently
leads to phase segregation as the ternary composition reaches the bi-
nodal curve of the phase diagram and eventually to solidification. An
oil which is too polar will either remain miscible with the polymer (see
Chart 1) or prevent polymer spreading as discussed below.

For microencapsulation and core-shell formation, it is necessary that

(assigned W) (see Scheme 1). The spreading coefficient Ss is defined by
the free energy for cohesion AGs and adsorption AG§ in Eq. (1) as;

Ss = AGs — AGS = Yoyw — (syw + %ess) (€]

The spreading coefficients were used by Torza and Mazon [9] to
determine the morphology of a system comprising three immiscible
liquids. The theory was later used to encompass phase segregating
polymers [5,7,10]. Assuming that yc,w > Yc/s, three possible sets of
spreading conditions are obtained (Egs. (2)-(4)) [5,9];

the shell polymer (assigned S) wets the core material (usually an oil or Sc <05 Sw<0; S5>0 @
as in this report, a polymer, assigned C) and the aqueous phase Se <0; Sw<0; S5<0 (3)
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Chart 1. Polymers used for shells, oils/polymers used for cores and dyes used for encapsulation. Solubility parameters (§[MPa'/?]) and the logarithm of the octanol-
water partition coefficient (log K,,) are provided, as obtained from chemical databases (see the Supplementary Material, Table S1).
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