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A B S T R A C T

We investigate evaporation of a sessile droplet on a non-wetted surface in the framework of diffusion-limited and
quasi-steady evaporation. We extend previous models and numerically solve Laplace equation for the diffusion
of liquid vapor into ambient. We propose a unified, simple and accurate expression of the evaporation mass flux
valid for 90°≤ θ≤ 180°, where θ is the equilibrium contact angle. In addition, using the derived expression of
the evaporation mass flux, we propose a simple and accurate expression of the evaporation mass rate for a non-
wetted surface, which does not exhibit singularity at θ=180°. Finally, using the scaling analysis, the expression
of the evaporation mass flux is utilized to estimate the direction and magnitude of the characteristic evaporation-
driven flow velocity inside the droplet on a non-wetted surface. The predicted flow direction is found to be
consistent with the previous measurements.

Owing to several technical applications, the evaporation of a sessile
droplet on a solid surface is a much-studied problem in the interface
science in the last decade [1]. In particular, an evaporating droplet can
be utilized to self-assemble colloidal particles suspended in it [2]. In the
framework of quasi-steady and diffusion-limited evaporation, previous
studies [2,3] have shown that the evaporation mass flux (J [kgm−2 s])
on the liquid-gas interface is non-uniform on a partially-wetted sub-
strate (0° < θ≤ 90°) and the largest evaporation occurs near the
contact line. Hu and Larson [3] simplified Deegan's model [2] and
provided the following simplified expression of J for a partially-wetted
surface,
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where r, θ and R are the radial coordinate, contact angle and wetted
radius, respectively (Fig. 1(a)). The expressions of J0(θ) and λ(θ) are
given as follows [3],
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where D is the diffusion coefficient [m2 s−1] of the liquid vapor into
outside gas, csat is vapor concentration [kgm−3] at its saturated value
at the ambient temperature, c∞ is the concentration value in the am-
bient and R is the wetted radius of the droplet. The evaporation mass
flux diverges at the contact line (r= R) for θ < 90° [2,3] and a con-
stant value for θ=90° is given by the following expression [4],
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The largest error between the numerical solution as compared to the
fitted solution obtained by Eq. (1) was around 6% [3].

In case of a non-wetted surface (90° < θ≤ 180°), the largest eva-
poration occurs at the apex of the droplet [5]. The non-wettability or a
larger contact angle can be achieved by engineering nano- and micro-
textures on a surface with contact angle larger than 65° [6,7]. Popov [4]
derived the following generalized expression of J, valid for any contact
angle, 0° < θ≤ 180°.
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where α and P-1/2+iτ are toroidal coordinate and Legendre functions of
the first kind, respectively [4]. Stauber et al. [5] revisited solution of an
equivalent electrostatics problem reported by Smith and Barakat [8]
and derived the following closed form of J for a non-wetted surface at
θ=180°,
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where B0(·) is the Bessel function of the first kind of zeroth order, Rsph is
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the radius of the sphere fitted to the droplet (Rsph= R/sinθ) and z is the
axial coordinate on the liquid-gas interface, expressed as [5],

= − ± −z R θ R rcossph sph
2 2 , where + and − sign corresponds to the

upper and lower half of the sphere, respectively. Authors of recent
studies [5,9,10] plotted the solution of eq. 4 and showed that the profile
of J for a non-wetted surface is significantly different than that for a
partially-wetted surface [2,3]. Specifically, in the former, J slightly
decreases along the upper half of the droplet and decays to a smaller
value near the contact line in the lower half.

The expression of J for non-wetted surface (90° < θ≤ 180°) re-
ported in the literature (Eq. (4)) is transcendental and it is not easy to
use it in the simple models. A simplified expression of the evaporation
mass flux (Eq. (1)) was reported by Hu and Larson [3] for a partially-
wetted surface (0° < θ≤ 90°). However, to the best of our knowledge,
an expression for a non-wetted surface has not been reported in the
literature. Similarly, the expression of evaporation mass rate M

•

[kg s−1], reported by Hu and Larson [3], is valid for 0°≤ θ≤ 90° and a
simple expression of M

•
, recently reported by Hu et al. [11], exhibits

singularity at θ=180°. In addition, using scaling analysis, previous
studies have shown the dependence of the magnitude of the internal
evaporation-driven flow velocity on J on the partially-wetted surface.
For instance, the internal flow velocity scales with J near the contact
line in the absence of Marangoni stresses [12]. The scaling analysis of
the internal flow velocity on a non-wetted surface has not been reported
thus far, to the best of our knowledge. Therefore, the objective of this
letter is to derive simple and accurate expressions of the evaporation
mass flux and evaporation rate of an evaporating sessile droplet on a
non-wetted surface (90° < θ≤ 180°). A secondary objective is to es-
timate the direction and magnitude of the internal velocity by scaling
analysis, using the derived expression of J.

First, we numerically integrate Eq. (5) to obtain J at θ=180° and
compare our data with solution of an equivalent electrostatics problem,
reported by Smith and Barakat [8]. In this problem, the electrostatic
potential field is solved around two perfectly conducting contiguous
spheres of the same radius. The vapor concentration and evaporation
flux correspond to the electrostatic potential and surface charge den-
sity, respectively. Fig. 1(b) shows a good agreement of the variation of
normalized evaporation flux (JN= JH/[D(csat− c∞)], where H=2Rsph

is droplet height) with respect to azimuthal angle Φ, obtained in present
work and that reported by Smith and Barakat [8]. The direction of Φ is
shown in the inset, and Φ=0° and Φ=180° correspond to the apex of
the droplet and to the contact line, respectively. The evaporation flux
on the upper hemisphere slightly decreases and the value at Φ=90°
decreases by 12% of the value at Φ=0°. In the lower half of the
hemisphere, J decays exponentially to zero at Φ=180°.

Second, a finite element method based numerical model is em-
ployed for simulating the diffusion-limited and quasi-steady

evaporation of a sessile, spherical cap droplet on a non-wetted surface
at ambient temperature (Fig. 2(a)). We solve the diffusion of the liquid
vapor in the air surrounding the droplet using Laplace equation [3],

∇
→

=c 0
2

, where c is the liquid vapor concentration [kgm−3]. The
evaporation mass flux at the liquid-gas interface (J) is expressed as
follows,

→
= − ∇

→
J D c|LG, where subscript LG denotes the liquid-gas in-

terface. We solve the Laplace equation in a computational domain
shown in Fig. 2(b). The boundary conditions are shown in Fig. 2(b) and
are briefly described as follows. The vapor concentration at the droplet-
air interface is prescribed at its saturated value at the ambient tem-
perature (T∞=25°C), c= csat. The concentration in the far-field is
expressed in term of relative humidity of the ambient (γ) and is given by
c= c∞= γcsat. The value of γ is taken as 0.5 in the simulations. The far-
field is set at r=50H, z=50H, where H is the height of the droplet,
after performing a domain-size independence study. Axisymmetric
boundary condition, ∂c/∂r=0, is applied at, z > H, r=0. No pene-
tration of the vapor concentration into the surface of the substrate, ∂c/
∂z= 0, is applied at r > R, z=0. The following parameters are used in
the model [3]: D=2.61×10−5 m2/s and csat = 2.32×10−2 kg/m3. A
grid-size convergence study is performed to select adequate grid re-
solution and a typical grid used in the simulations is shown in Fig. 2(c).
The validations of the model are included in the supplementary data.

In the limiting case of θ=180°, the coordinates of the apex of the
droplet are, r=0, z=H=2Rsph, hN=1, where hN is normalized axial
coordinate (hN= h/H). The normalized flux is, JN= 2C, where C is

Catalan constant (C=0.916, ∫− =
∞

−C q q q2 1 tanh e dq

0
), given by Eq.

(5) because B0(0)= 1 in this case. The flux, JN, at the contact line
(hN=0, i.e. Φ=3.14) is JN=0, as plotted in Fig. 1(b). Owing to ex-
ponential decay of JN with respect to hN (Fig. 1(b)), a simplified ex-
pression of JN for θ=180° is proposed as follows,
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where J0, b and λ are functions of θ, and Eq. (6) satisfies JN=0 at
hN=0. Using curve fitting by least squares method, J0, b and λ are
obtained as 2C, 5.503 and −1.5, respectively, with R2= 0.998. In the
limiting case of θ=90°, JN is constant and equal to 1 (Eq. (3)), and
thereby, J0 and λ are 1 and 0, respectively, in order to extend Eq. (6) to
this case.

For 90° < θ < 180°, JN is not zero at hN= 0 (at the contact line)
and Eq. (6) cannot be satisfied at hN= 0 for 90° < θ < 180°. In order
to extend Eq. (6) for 90° < θ < 180° and to alleviate this problem, Eq.
(6) is slightly modified as,
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where J0, k, b and λ are functions of θ. Note that Eq. (7) is satisfied for
θ=90° with J0= 1 and λ=0. Using the finite-element model, we
performed simulations at different contact angles and contours of the

Fig. 1. (a) Geometry of a sessile droplet on a par-
tially-wetted surface (b) Comparison between com-
puted normalized evaporation flux JN obtained using
Eq. (5) for θ=180° in the present work and that
reported by Smith and Barakat [8] for an equivalent
electrostatics problem. The inset shows the geometry
of the droplet considered in this case.
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