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a b s t r a c t

In this paper, we consider to derive the coarsest memoryless quantizer which can stabilize a single-input
discrete-time linear time-invariant systemwith stochastic packet loss in the sense of stochastic quadratic
stability. We show that the upper bound of the coarseness is strictly given by the packet loss probability
and the unstable poles of the plants. We furthermore deal with permissible dead-zone width around
the origin of the quantizers and time-varying finite quantizers in order to realize control using finite
quantization steps.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, networked control systems have been actively
investigated in the field of control theory and one of the inter-
ests is to find the relationship between the permissible coarse-
ness of transmitted signals for stabilization and the properties of
plants. Some of the recent works on this topic include (Brock-
ett & Liberzon, 2000; Elia & Mitter, 2001; Fu & Xie, 2005; Good-
win, Haimovich, Quevedo, & Welsh, 2004; Nair & Evans, 2004;
Tatikonda & Mitter, 2004a; Tsumura & Maciejowski, 2003; Wong
& Brockett, 1999). In particular, in Elia and Mitter (2001) a sta-
bilization problem via quantized input signals is considered and
the coarsest memoryless quantizer for stabilization of single-input
discrete-time linear time-invariant systems is derived. A notable
point is that the upper bound of the coarseness is given only by
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the unstable poles of the plants. This result is also extended to
LQR type problems (Fu & Xie, 2005) and adaptive control problems
(Hayakawa, Ishii, & Tsumura, 2009a,b).
Another problem we should deal with for networked control

systems is the packet loss in data transmission. This problem
arises when unreliable communication channels are used such as
wireless networks or general-purpose channels. Clearly, losses of
signals cause performance degradation or can make a closed-loop
system unstable. Some research groups have dealt with this prob-
lem. LQ type control problems are considered in Imer, Yüksel, and
Başar (2006), and H∞ control approaches were proposed in Seiler
and Sengupta (2005) and Ishii (2008a). Sinopoli et al. (2004), stud-
ied stabilization in state estimation problems under packet losses.
In Elia (2005) and Ishii (2008b), the mean square stability of feed-
back control systems is investigated and the upper limit of loss
probability is given in terms of the unstable poles of the plants. For
the scalar case, this was shown in Hadjicostis and Touri (2002).
In spite of the above significant results showing the relation-

ships between ‘‘the unstable poles of plants and the coarseness
of quantization (Elia & Mitter, 2001)’’ and between ‘‘the unstable
poles of plants and the packet loss probability (Elia, 2005; Ishii,
2008b),’’ in real communication channels, it is more realistic to as-
sume that the channel contains both quantization and stochastic
packet losses. A natural extension of our interests is on the relation-
ship among the three properties above for such networked control
systems.

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2009.09.030

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:tsumura@i.u-tokyo.ac.jp
mailto:ishii@dis.titech.ac.jp
mailto:hiroto.hoshina@hitachigst.com
http://dx.doi.org/10.1016/j.automatica.2009.09.030


2964 K. Tsumura et al. / Automatica 45 (2009) 2963–2970

Fig. 1. Stabilization via quantized signals with stochastic packet losses.

This is our motivation of research and we investigate the coars-
est memoryless quantizer for stabilization with stochastic packet
losses. We show in particular that this upper bound of the coarse-
ness is strictly given by the packet loss probability and the unstable
poles of the plants (Section 2). As a consequence, we integrate and
generalize the previous results of Elia and Mitter (2001) and those
of Elia (2005) and Ishii (2008b).
In this paper, we furthermore deal with permissible dead-zone

width around the origin of the quantizer for a stochastic version
of practical stability (Section 3) and time-varying finite quantiz-
ers (Section 4) for realizing realistic quantizers which have finite
quantization steps.

2. The coarsest quantizer for stabilization with stochastic
packet losses

In this paper, we consider the following discrete-time linear
system:

G : x(k+ 1) = Ax(k)+ Bv̂(k), (1)
where x(k) ∈ Rn is the state vector, v̂(k) ∈ R is the control input,
A ∈ Rn×n and B ∈ Rn×1. Assume that (A, B) is stabilizable and A is
unstable.
We explain how the control signal is processedwhen it is trans-

mitted froma controller to the control input ofG according to Fig. 1.
At first, the control signal u(k) from the controller is quantized at
the controller side before it is sent over a communication channel.
The quantization is given by
v(k) = q(u(k)), (2)
where q(·) is a memoryless quantizer and u(k) ∈ R is an ordinary
analog control input generated by a static state feedback controller
K(·).
In addition,we assume that packet losses occurwith probability

α at the input-side channel of the plant. In this paper, we employ
a simple scheme where the packet loss sets v̂(k) = 0,1 and hence
the system can be described as
x(k+ 1) = Ax(k)+ Bθ(k)v(k), (3)
where θ(k) is a 0–1 randomvariablewith a probability distribution
given by

Pr(θ(k) = i) =
{
α, i = 0,
1− α, i = 1, 0 ≤ α < 1.

The reason why we deal with the case that the quantization is
limited to the plant input side is that it is one of the basic setups.
It is also a model where a large difference exists in the capacities
for transmissions to and from the controller such as in a wireless-
networked control system or a large-scale plant.
We next describe the stability we employ in this section. Con-

sider the following discrete-time system:
x(k+ 1) = f (x(k), θ(k)), (4)
where x(k) ∈ Rn is the state, and θ(k) ∈ {0, . . . ,N−1} represents
the mode of the system. The mode is an independent and

1 More complex models for packet loss are possible; however, we deal with the
simple and standard model in this paper.

identically distributed stochastic process with probabilities αi =
Pr(θ(k) = i). The function f (x, θ) satisfies f (0, θ) = 0 for arbitrary
θ . Thus, the origin x = 0 of the system is an equilibrium point.
For this system we define the following stability:

Definition 2.1. For the system (4), the equilibriumpoint at the ori-
gin is stochastically quadratically stable if there exists a positive-
definite function V (x) = xTPx and a positive-definitematrix R such
that

1V = E[V (x(k+ 1))|x(k)] − V (x(k))

≤ −x(k)TRx(k), ∀x(k) ∈ Rn. (5)

Remark 2.1. The condition (5) is sufficient for the origin of the sys-
tem (4) to be mean square stable (see, e.g., Ji and Chizeck (1990)),
i.e., for every initial state x0,

lim
k→∞

E[‖x(k)‖2|x0] = 0. (6)

The important point on the condition (5) is that the absolute av-
eraged decreasing rate of a Lyapunov function V is larger than or
equal to a quadratic form of x. Also we should note that another
condition1V < 0, ∀x, does not necessarily guarantee stability for
the ‘‘stochastic’’ nonlinear system different from the case Elia and
Mitter (2001). The matrix R (> O) in (5) regulates the convergence
rate of x and it is critical for the moment of x as shown in Proposi-
tion 3.1 and Theorem 3.1, Section 3, wherewe deal with a case that
the quantizer has a dead-zone.

In this section, our objective is to find the coarsest quantizer
q(·) which achieves stochastic quadratic stability for the system
(3). The coarseness of a quantizer q(·) is defined as (Elia & Mitter,
2001)

d = lim sup
ε→0

]u[ε]
− ln ε

, (7)

where ]u[ε] denotes the number of levels that the quantizer q(·)
has in the interval [ε, 1/ε].
Elia and Mitter (2001) showed that the coarsest quantizer for

the quadratic stabilization in the case of no packet loss is logarith-
mic and the coarsest expansion ratio ρsup (which is strictly defined
later) is given by

ρsup =

∏
i
|λui | + 1∏

i
|λui | − 1

, (8)

where λui represents the unstable poles of the plant. On the other
hand, in Elia (2005) and Ishii (2008b), a necessary and sufficient
condition on α for the mean square stabilizability in the case of no
quantization is given as

α < αsup =
1∏

i
|λui |

2
. (9)

In this paper, we consider the effects of both quantization and
packet losses and the natural extension of our interests is ‘‘What re-
lationship between ρsup, α and λui does there exist?’’ We provide a
complete answer to this question in the following theorem, which
unifies the results (8) and (9).

Theorem 2.1. The coarsest quantizer qc(·)withwhich the system (3)
is stochastically quadratically stable is given as:

qc(u) =


vi, u ∈

(
ρsup + 1
2ρsup

vi,
ρsup + 1
2

vi

]
,

−vi, u ∈
[
−
ρsup + 1
2

vi,−
ρsup + 1
2ρsup

vi

)
,

0, u = 0,

(10)
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