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A B S T R A C T

The Donnan equilibrium is employed to evaluate the entropic repulsion between two charged plates that feature
charge regulation and are in equilibrium with a reservoir solution of monovalent salt. This approach represents
the zero-field limit of the Poisson–Boltzmann equation, valid for strongly overlapping electrical double layers.
We show that this scenario features an intrinsic length scale, which serves as the unscreened pendant of the
Debye length for strongly overlapping double layers. In general, the scaling of the disjoining pressure with inter-
plate distance is dependent on the boundary conditions (constant charge, constant potential, or charge reg-
ulation). Surprisingly, here we find for sufficiently low potentials the same inverse-square decay as for constant
charge surfaces. We test the validity of the zero-field limit by comparison with self-consistent field lattice
computations that invoke the full Poisson equation for finitely sized ions between two charge-regulated plates.

The electrical double-layer repulsion between two charged surfaces
in equilibrium with a salt reservoir is conventionally [1–10] evaluated
under the assumption that surfaces are sufficiently far apart such that
their double-layers only weakly interact. This so-called ‘weak-overlap
approximation’ [4] implies that the electrical potential in the mid-plane
between the two surfaces is small (though surface potentials, never-
theless, may be high). Within this weak-overlap approximation, the
Poisson–Boltzmann (PB) equation eventually yields osmotic disjoining
pressures that decay exponentially; the typical decay length being the
Debye screening length κ−1 which measures the thickness of a diffuse
electrical double-layer in solution. Together with Van der Waals at-
tractions, one arrives at the exponentially screened, classical DLVO
potential [1–4], which is applicable to dilute colloidal fluids in which
the average colloid–colloid distance is (much) larger than κ−1.

When distances between charged surfaces are comparable to or less
than κ−1 such that double-layers strongly overlap and the weak-overlap
approximation breaks down, one must resort to more complicated so-
lutions containing elliptic functions [11] or to numerical solutions. For
low surface potentials with plates in close proximity and in presence of
background salt, analytical approximations exist featuring a peculiar
inverse square decay of the disjoining pressure with the inter-plate
separation [11]. To the best of our knowledge, however, these

approximations are only known for the boundary condition of constant
surface charge [11–13], but not for surfaces featuring charge regula-
tion, even though these boundary conditions in general do not lead to
the same scaling behavior of the disjoining pressure [14]. It should be
mentioned that an inverse square decay is also known for the salt-free
(counter-ion only) limit at large separations, even in case of charge
regulation [11,15].

Here we demonstrate a relatively straightforward and analytical
treatment of the disjoining pressure between strongly overlapping flat
double-layers featuring charge regulation on the basis of the Donnan
equilibrium. This method exploits the circumstance that, on approach
of two charged plates, absolute values of the potential in the electrolyte
solution between the plates rise, but potential gradients on average
become smaller. Thus to analyze repulsions between plates at a distance
comparable to the Debye length, the limit of a weak electric field has to
be considered [13] rather than the limit of a high potential [1,2]. From
the weak-field point of view, the simplest starting point is obviously the
case where the electric field is zero everywhere, i.e., the ions in the
inter-plate electrolyte solution are homogeneously distributed in a
constant electrical potential, also known as the Donnan poten-
tial [16,17].

Zero-field disjoining pressures as function of the Donnan potential
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are derived as follows. Consider two parallel plates separated by an
electrolyte solution S in thermodynamic equilibrium with a large re-
servoir containing a constant number density ρs of salt molecules of
fully dissociated 1–1 electrolyte. The electrical potential in S, relative to
the potential in the reservoir, equals the constant Donnan potential Ψ ,
where the bar indicates the zero-field assumption. The ions in S are
homogeneously distributed in zero electric field, with average densities
given by the Boltzmann distributions for ideal ions:

= ∓ ≡±ρ ρ ū ū eΨ
k
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T

s
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Here ū represents the dimensionless Donnan potential, e is the ele-
mentary charge, and kBT is the thermal energy. The excess ion density
Δρ in S relative to the ion density in the reservoir is ≡ + −+ −ρ ρ ρ ρΔ 2 s,
which can be combined with Eq. (1) to yield = −ρ ρ ūΔ 2 (cosh 1)s . For
ideal ions obeying Van ’t Hoff's law, the disjoining pressure equals
ΔΠd=ΔρkBT, which in terms of the Donnan potential reads
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Here pressures are scaled on the osmotic pressure 2ρskBT of the salt
reservoir. Since >ūcosh 1, the ion density in S always exceeds the re-
servoir ion density so charged plates always spontaneously separate
(‘disjoin’). Eq. (2) is exact for homogeneously distributed, ideal ions,
and is independent of the extent of surface charge regulation. The inter-
plate Donnan potential ū in Eq. (2) follows from the charge density on
the surfaces and the electro-neutrality condition, which we will con-
sider next.

Suppose the surfaces have a number of sites per unit area σtot that
each may release a mono-valent positive counter-ion into solution; a
practical example, addressed later, are the protons released by the
dissociating hydroxyl groups from a silica surface. When σ denotes the
density of dissociated, negatively charged sites and +ρ the density of
counter-ions in S, the dissociation equilibrium constant is given by

= −+K σρ σ σ( )/( )tot . On substitution of the cation Boltzmann distribu-
tion from Eq. (1) the degree of dissociation σ/σtot follows as

=
+

=
+ −+

σ
σ

K
K ρ

k
k ūexp( )

,
tot (3)

where we introduced the dimensionless equilibrium constant

≡k K ρ/ .s (4)

When the plates move apart, the charge density σ increases ac-
cording to Eq. (3) and approaches the maximum value
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σ σ k
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achieved for the case of zero Donnan potential for a single free plate.
Next we employ the electro-neutrality condition = ++ −ρ h ρ h σ2 , for

two negatively charged plates at inter-plate distance h, to find on
substitution of σ from Eq. (3):
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Here we have introduced a characteristic length λ defined as
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The length scale λ, incidentally, is a distinguishing feature of the zero-
field Donnan limit, being the unscreened pendant of the Debye length
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(where ℓB is the Bjerrum length), which is the length scale that appears

in the exponentially screened repulsions between plates with weak
double-layer overlap [1–13]. Whereas κ−1 indicates the typical distance
over which screening occurs, its pendant λ indicates the inter-plate
distance h ≈ λ at which counter-ions and background salt have a
comparable effect on the Donnan potential: for h ≪ λ counter-ions
dominate, while for h ≫ λ background salt overshadows the contribu-
tion of the counter-ions. Alternatively, λ can be expressed in terms of
the Gouy–Chapman length ℓGC=(2πℓBσtot)−1 of a fully dissociated
plate as
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We return to Eq. (6), which on substitution of the Boltzmann dis-
tribution, Eq. (1), yields an expression relating potential ū and inter-
plate distance h:
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This equation is cubic in −ūexp( ). Fig. 1a illustrates that for given
inter-plate distance h the absolute value of the zero-field potential in
Eq. (10) rises upon increasing the dimensionless dissociation constant k,
an increase which corresponds with enhanced surface charge density on
the plates, see Eq. (3). If for given k the plates move apart, the Donnan
potential decreases and, consequently, the disjoining pressure decays.

To find the leading term in the pressure decay we first expand ex-
ponents ±ūexp( ) in Eq. (10) up to order ū2, to find the solution

Fig. 1. (a) Zero-field Donnan potential ū and (b) disjoining pressures ΔΠd versus the
dimensionless inter-plate distance h/λ, with λ defined in Eq. (7). The potential follows
from Eq. (10) and the disjoining pressure through subsequent application of Eq. (2). The
green dashed lines indicate the low-potential, large separation limits of Eqs. (12) and
(15). Increasing the dimensionless dissociation constant k increases the magnitude of ū
for a given inter-plate distance. Both potential and disjoining pressure show universal
behavior at large separations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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